Differential equations

1. (15 points) Consider the following eigenvalue problem for $\Phi(x)$ with eigenvalue parameter λ:

$$x\Phi'' - \Phi' - \Phi = -x\lambda\Phi, \quad 1 < x < 2,$$
$$\Phi(1) = 0, \quad \Phi'(2) = -\Phi(2).$$

\hspace{1cm} (1)

(a) (4 points) Prove that any eigenvalue λ for (1) must be real-valued.

(b) (4 points) Then, prove that any eigenvalue λ for (1) must satisfy $\lambda > 0$.

(c) (3 points) State and derive the orthogonality relation for eigenfunctions of (1).

(d) (4 points) Finally, suppose that $f(x)$ satisfies the boundary value problem

$$xf'' - f' - f = 1, \quad 1 < x < 2,$$
$$f(1) = 0, \quad f'(2) = -f(2).$$

Find a formula for the coefficients c_n in the eigenfunction representation $f(x) = \sum_{n=1}^{\infty} c_n \Phi_n(x)$ for the solution to (2). Here, $\Phi_n(x)$ for $n \geq 1$ are the eigenfunctions of (1).

2. (15 points) Let $\omega > 0$ be a real-valued constant, and consider the fourth-order initial-value problem, defined on $t \geq 0$, for $y(t)$

$$y'''' - y = 4\cos(\omega t).$$

\hspace{1cm} (4)

(a) (5 points) For $\omega \neq 1$, find the general solution to (4) in terms of arbitrary coefficients.

(b) (4 points) Consider (4) with $\omega \neq 1$ with the initial values $y(0) = A$ and $y'(0) = y''(0) = y'''(0) = 0$. Determine a formula for A in terms of ω so that $y(t)$ is bounded as $t \to \infty$.

(c) (3 points) Find the particular solution to (4) when $\omega = 1$.

(d) (3 points) Finally, for $\omega \neq 1$ consider the modified initial value problem on $t > 0$

$$y'''' + y = 4\cos(\omega t), \quad \text{with} \quad y(0) = A, \quad y'(0) = y''(0) = y'''(0) = 0.$$

\hspace{1cm} (5)

Is there a value of A for which $y(t)$ is bounded as $t \to \infty$? Explain your answer clearly.

3. (15 points) Consider the diffusion problem for $u(r, \theta, t)$ in a 2-D disk of radius a with an inflow/outflow flux boundary condition modeled by

$$u_t = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta}, \quad 0 \leq r \leq a, \quad 0 \leq \theta \leq 2\pi, \quad t \geq 0,$$
$$u_r(a, \theta, t) = f(\theta), \quad u \text{ bounded as } r \to 0, \quad u \text{ and } u_\theta \text{ are } 2\pi \text{ periodic in } \theta, \quad u(r, \theta, 0) = g(r, \theta).$$

(a) (3 points) Write the problem that the \textbf{steady-state solution} $U(r, \theta)$ would satisfy. Prove that such a steady-state solution $U(r, \theta)$ does not exist when $\int_0^{2\pi} f(\theta) \, d\theta \neq 0$.

(b) (8 points) Assume that $\int_0^{2\pi} f(\theta) \, d\theta = 0$. Calculate an integral representation for the \textbf{steady state solution} $U(r, \theta)$ by summing an appropriate eigenfunction expansion.

(c) (4 points) Assume that $\int_0^{2\pi} f(\theta) \, d\theta \neq 0$. Calculate an expression for the spatial average of u over the disk, i.e. for $(\pi a^2)^{-1} \int_0^{2\pi} \int_0^a u \, r \, dr \, d\theta$, and interpret the effect on this average of the net boundary flux $\int_0^{2\pi} f(\theta) \, d\theta$.
Linear Algebra

4. (15 points) Consider the following statements. Either prove the statements are true for all matrices with real entries or provide a counter-example. Note that an orthogonal matrix is square with nonzero, mutually orthogonal columns. \(A^T \) denotes the transpose of \(A \).

(a) (3 points) The product of two \(n \times n \) orthogonal matrices is invertible.
(b) (3 points) The difference between two distinct \(n \times n \) orthogonal matrices cannot be singular.
(c) (3 points) The product of a symmetric matrix and a diagonal matrix is always symmetric.
(d) (3 points) The Range of an \(n \times n \) matrix is perpendicular to its Nullspace.
(e) (3 points) If \(A \) is an \(n \times n \) matrix with \(n \) odd and \(A = -A^T \) then \(A \) must be singular.

5. (15 points) Consider real matrices with the block form

\[
C = \begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix}
\]

where \(A \) is a symmetric square matrix, \(B^T \) denotes the transpose of \(B \) and \(B \) is not necessarily square. The bottom right block is a square matrix of zeros.

(a) (5 points) Show that \(C \) is singular if the number of columns of \(B \) is strictly larger than the number of rows.
(b) (10 points) Show that if \(A \) is strictly positive definite, then \(C \) is nonsingular iff the columns of \(B \) are linearly independent.

6. (15 points) Let \(I \in \mathbb{R}^{N,N} \) be the \(N \times N \) dimensional identity matrix, where \(N \geq 2 \) is an integer, and let \(u \in \mathbb{R}^N \) and \(v \in \mathbb{R}^N \) be any two distinct vectors each with Euclidean length one. Define the matrix \(A \) by

\[
A = I - uv^T.
\]

(a) (5 points) Calculate all the eigenvalues and eigenvectors of \(A \)
(b) (3 points) Prove that \(A \) is nonsingular and calculate \(\det(A) \).
(c) (4 points) Derive an explicit formula for \(A^{-1} \).
(d) (3 points) Let \(I \in \mathbb{R}^{N,N} \) for \(N \geq 2 \) be the identity matrix and define \(e \in \mathbb{R}^N \equiv (1, \ldots, 1)^T \) and \(e_1 \in \mathbb{R}^N \equiv (1,0,0,\ldots,0)^T \). Prove that the following linear system

\[
\left(I - \frac{1}{N}ee^T \right) x = e_1,
\]

has no solution. Next, if \(e_1 \) is replaced by an arbitrary vector \(b \), what is the condition on \(b \) for this problem to have a solution?