Key for the 2002 Calculus Challenge Exam

Note: There is no attempt here to describe all possible correct answers. Students sitting the calculus challenge examination will have used a variety of texts and been exposed to a variety of teaching styles.

For the examiners, apart from the accuracy of the answers, the crucial test is whether the student has made clear the principles and/or method being used and whether those principles and/or method are sound.

Marks are not deducted for sufficiently trivial errors, e.g., inadvertently dropping a sign.

1. Compute the following limits.

\[\text{ANSWER: } -5 \]

JUSTIFY YOUR ANSWER

Note that \(\frac{t^2 - t - 6}{t^2 + 5t + 6} = \frac{(t + 2)(t - 3)}{(t + 2)(t + 3)} = \frac{t - 3}{t + 3} \) whenever \(t \neq -2 \). Therefore

\[
\lim_{t \to -2} \frac{t^2 - t - 6}{t^2 + 5t + 6} = \lim_{t \to -2} \frac{t - 3}{t + 3} = \frac{(\lim_{t \to -2} t) - 3}{(\lim_{t \to -2} t) + 3} = \frac{-2 - 3}{-2 + 3} = -5.
\]

Instead of using the limit laws to evaluate \(\lim_{t \to -2} \frac{t - 3}{t + 3} \), one may use the fact that a rational function is continuous, i.e., continuous at each point of its domain.

\[\text{ANSWER: } 5 \]

JUSTIFY YOUR ANSWER

From the limit laws the given limit is equal to

\[
\left(\lim_{x \to 0^+} \frac{\sin x}{x} \right) \left(3 \lim_{x \to 0^+} e^{-1/x} + 5 \lim_{x \to 0^+} e^x \right)
\]

provided the three limits in the line above exist. We may take \(\lim_{x \to 0^+} (\sin x)/x = 1 \) as known. (A second way of looking at this limit is via l’Hospital’s rule. A third way is to notice that, since \((d/dx) \sin x = \cos x \), we have \(\lim_{x \to 0} (\sin h)/h = \cos 0 = 1 \).) Now \(e^x \) is continuous so \(\lim_{x \to 0^+} e^x = e^0 = 1 \). Finally, as \(x \to 0^+ \), \(1/x \to \infty \), whence \(e^{1/x} \to \infty \) and so \(e^{-1/x} \to 0 \). Thus the given limit evaluates to \(1 \cdot (0 + 5) = 5 \).
2. (a) Find the asymptotes of \(y = \left(\frac{x}{x-1} \right)^2 \) and justify your answer.

ANSWER:
\[
\begin{align*}
y &= 1 \\
x &= 1
\end{align*}
\]

EXPLANATION

The following is an acceptable explanation: \([x/(x-1)]^2\) is defined except at \(x = 1\). Also,
\[
\lim_{x \to -\infty} \left(\frac{x}{x-1} \right)^2 = \lim_{x \to \infty} \left(\frac{x}{x-1} \right)^2 = 1 \quad \text{and} \quad \lim_{x \to 1^+} \left(\frac{x}{x-1} \right)^2 = \lim_{x \to 1^-} \left(\frac{x}{x-1} \right)^2 = \infty.
\]

2. (b) Where does the curve \(y = \left(\frac{x}{x-1} \right)^2 \) cross its horizontal asymptote?

ANSWER: \((1/2, 1)\)

EXPLANATION

We have to solve the equations: \(y = 1 \) and \(y = [x/(x-1)]^2 \). Eliminating \(y \), we have \(x = \pm(x-1) \). The only solution is \(x = 1/2 \), which gives \(y = 1 \).

3. (a) Find \(\frac{dv}{du} \) when \(v = \sqrt{\frac{\tan u}{1 + \tan u}} \).

ANSWER:
\[
\frac{dv}{du} = \frac{\sec^2 u}{2 (1 + \tan u)^{3/2} (\tan u)^{1/2}}
\]

SHOW YOUR WORK

Using the chain rule and the quotient rule, we have:
\[
\frac{dv}{du} = \frac{1}{2} \sqrt{\frac{1 + \tan u}{\tan u}} \frac{d}{du} \left(\frac{\tan u}{1 + \tan u} \right) = \frac{1}{2} \left(\frac{1 + \tan u}{\tan u} \right)^{1/2} \frac{(1 + \tan u) \sec^2 u - \tan u \sec^2 u}{(1 + \tan u)^2}
\]

3. (b) Let \(a \) be a constant and \(f(x) = \sin(ax) \). Find the 97-th derivative, \(f^{(97)}(x) \), of the function \(f(x) \).

ANSWER: \(a^{97} \cos ax \)

SHOW YOUR WORK

We have: \(f(x) = \sin(ax) \), \(f'(x) = a \cos(ax) \), \(f''(x) = -a^2 \sin(ax) \), \(f^{(3)}(x) = -a^3 \cos(ax) \), \(f^{(4)}(x) = a^4 \sin(ax) \), \ldots. There is a clear pattern from which we deduce \(f^{(96)}(x) = a^{96} \sin(ax) \).
4. (a) Find the general antiderivative of \((9 - 4x^2)^{-1/2}\).

\[
\frac{1}{2} \sin^{-1} \left(\frac{2x}{3} \right) + C.
\]

SHOW YOUR WORK: Using the substitution \(u = (2x)/3\), we have:

\[
\int (9 - 4x^2)^{-1/2} \, dx = \int (9 - 4(3u/2)^2)^{-1/2} \, (3/2) \, du = \frac{1}{2} \int (1 - u^2)^{1/2} \, du = \frac{1}{2} \sin^{-1} u + C.
\]

(b) It is given that \(f'(x) = 2^x + x^2\) and \(f(0) = 0\).

Find \(f(x)\).

SHOW YOUR WORK: Writing \(2^x\) as \(e^{x \ln 2}\) we see that the antiderivative of \(2^x + x^2\) is \(\left(e^{x \ln 2} / \ln 2 \right) + x^3/3\). By the evaluation theorem,

\[
f(x) - f(0) = \int_0^x f'(t) \, dt = \left[\frac{2^t}{\ln 2} + \frac{t^3}{3} \right]_0 = \frac{2^x - 1}{\ln 2} + \frac{x^3}{3}.
\]

5. Use the definition of derivative (and not the product rule) to show that, if \(f(x)\) is differentiable at \(x = c\) and \(g(x) = xf(x)\), then \(g'(c)\) exists and \(g'(c) = f(c) + cf'(c)\).

ANSWER: Using the definition of derivative we have

\[
g'(c) = \lim_{h \to 0} \frac{g(c + h) - g(c)}{h} = \lim_{h \to 0} \frac{(c + h)f(c + h) - cf(c)}{h}
\]

\[
= \lim_{h \to 0} \left[c \left(\frac{f(c + h) - f(c)}{h} \right) + f(c + h) \right] = c \lim_{h \to 0} \left(\frac{f(c + h) - f(c)}{h} \right) + \lim_{h \to 0} f(c + h)
\]

\[
= cf'(c) + f(c).
\]

Note that \(\lim_{h \to 0} f(c + h) = f(c)\) because differentiability of \(f\) at \(c\) (which is assumed) implies continuity at \(c\).

6. For what value of \(k\) is the function

\[
h(x) = \begin{cases}
2x + 3 & \text{if } x \leq 1 \\
 k - 1 & \text{if } x > 1
\end{cases}
\]

continuous?

JUSTIFY YOUR ANSWER: Since \(2x + 3\) and \(k - 1\) are continuous functions, \(h(x)\) is continuous at \(x = c\) for all \(c \in (-\infty, 1) \cup (1, \infty)\) and continuous on the left at \(x = 1\). Further, \(\lim_{x \to 1^-} h(x) = k - 1\) is equal to \(h(1) = 5\) if and only if \(k = 6\).
7. (a) Express \(\frac{dy}{dx} \) as a function of \(x \), when \(y = \left(\frac{x^7 \cos x}{7x^2 \sqrt{1 + x^2}} \right) \).

\[
\frac{dy}{dx} = \left(\frac{x^7 \cos x}{7x^2 \sqrt{1 + x^2}} \right) \left(\frac{7}{x} - \tan x - \ln 7 - \frac{x}{1 + x^2} \right)
\]

SHOW YOUR WORK: Taking natural logarithms and differentiating, we get

\[
\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left(\ln x + \ln \cos x - x \ln 7 - \frac{1}{2} \ln(1 + x^2) \right) = \frac{7}{x} - \tan x - \ln 7 - \frac{x}{1 + x^2}.
\]

Although the line above is only valid for values of \(x \) such that \(x, \cos x > 0 \), the resulting formula is valid for all \(x \neq 0 \) such that \(\tan x \) is defined.

(b) Express \(\frac{dy}{dx} \) as a function of \(x \), when \(y = x^{\ln x} \).

\[
\frac{dy}{dx} = 2(\ln x)x^{(\ln x)-1}
\]

SHOW YOUR WORK: We have

\[
\frac{dy}{dx} = \frac{d}{dx} \left((e^{\ln x})^{\ln x} \right) = \frac{d}{dx} \left(e^{(\ln x)^2} \right) = e^{(\ln x)^2} \frac{d}{dx}(\ln x)^2 = 2(\ln x)x^{(\ln x)-1}.
\]
8. A curve has the equation $\sin(x + y) = xe^y$.

[2] (a) Show that $(0, \pi)$ is on the curve.

ANSWER: We just observe that $\sin(0 + \pi) = 0 = 0 \cdot e^\pi$.

[4] (b) Find the equation of the line tangent to the curve at $(0, \pi)$.

ANSWER:

$$y + (1 + e^\pi)x = \pi$$

SHOW YOUR WORK: By implicit differentiation,

$$\cos(x + y) \left(1 + \frac{dy}{dx} \right) = e^y + xe^y \frac{dy}{dx}.$$

It follows that $\left(\frac{dy}{dx} \right)_{x=0,y=\pi} = -1 - e^\pi$. This allows us to write down the equation of the tangent using the point-slope form of the equation of a line.

[4] (c) A point moves along the curve so that at $(0, \pi)$ its x-coordinate is increasing at a rate of 3 units/sec. How fast is its y-coordinate changing at $(0, \pi)$?

ANSWER: decreasing by $3(1 + e^\pi)$ units per sec

SHOW YOUR WORK: In general, $\frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$. Thus

$$\left(\frac{dy}{dt} \right)_{x=0,y=\pi} = (-1 - e^\pi) \left(\frac{dx}{dt} \right)_{x=0,y=\pi} = -3(1 + e^\pi).$$
9. Let \(f(x) = e^{x-2} + x^3 - 2 \).

(a) Use the derivative of \(f \) to explain why the equation \(f(x) = 0 \) has at most one solution.

EXPLANATION: Since \(f'(x) = e^{x-2} + 3x^2 > 0 \) for all \(x \), the function \(f \) is strictly increasing.

(b) Explain why \(f(x) = 0 \) has a solution in the interval \((1, 2)\).

EXPLANATION: Note that \(f \) is continuous, \(f(1) = 1 - (1/e) < 0 \), and \(f(2) = 1 + 8 - 2 = 7 > 0 \). By the intermediate value theorem, \(f \) has a zero in \((1, 2)\).

(c) Newton's method with an initial estimate of 2 is used to find an approximate value for the solution of \(f(x) = 0 \).

What is the next estimate?

SHOW YOUR WORK: The next estimate is \(2 - (f(2)/f'(2)) = 2 - (7/13) = 19/13 \). This is the \(x \)-coordinate of the point in which the tangent to \(y = f(x) \) at \((2, f(2))\) meets \(y = 0 \).

10. A particle moves along the \(x \)-axis with velocity \(\frac{1}{1 + t^2} \) at time \(t \). If it passes the point \(\pi/6 \) at time \(t = 1 \), what is its acceleration when it passes the point \(\pi/4 \)?

ANSWER: \(-\sqrt{3}/8\)

SHOW YOUR WORK: We are given \(\frac{dx}{dt} = \frac{1}{1 + t^2} \). Taking antiderivatives, we get \(x = \tan^{-1} t + C \), where \(C \) is a constant. Since \(x(1) = \pi/6 \), we see that \(\pi/6 = (\pi/4) + C \). So \(C = -\pi/12 \). Letting \(x = \pi/4 \), we get \(\pi/4 = \tan^{-1} t - (\pi/12) \). So \(\tan^{-1} t = \pi/3 \), which means \(t = \sqrt{3} \) when \(x = \pi/4 \).

The acceleration is given by

\[
\frac{d^2x}{dt^2} = \frac{d}{dt} \left(\frac{1}{1 + t^2} \right) = \frac{-2t}{(1 + t^2)^2}.
\]

Substituting \(t = \sqrt{3} \), we get \(-\sqrt{3}/8\) for the acceleration.
11. A rectangle has two adjacent vertices \((-t, 0)\) and \((t, 0)\) on the \(x\)-axis and the other two on the parabola \(y = k - x^2\), where \(k > 0\). For each \(k\) there exists \(t > 0\) which maximizes the area of the resulting rectangle.

Find \(k\) such that the rectangle of maximum area is a square.

ANSWER:

\[k = 3\]

SHOW YOUR WORK: From the figure, the area of the rectangle is given by:

\[A = 2t(k - t^2).\]

Now \(dA/dt = 2k - 6t^2\) is 0 when \(t = \pm \sqrt{k/3}\). Since \(dA/dt > 0\) for \(t \in (0, \sqrt{k/3})\) and \(dA/dt < 0\) for \(t \in (\sqrt{k/3}, \sqrt{k})\), \(t = \sqrt{k/3}\) gives the maximum area. For the resulting rectangle to be a square, we need

\[2\sqrt{k/3} = 2t = k - t^2 = k - (\sqrt{k/3})^2 = 2k/3.\]

The only solution is \(k = 3\) because \(k\) is constrained to satisfy \(k > 0\).

12. Find the line \(y = mx\) through the origin, with positive slope, which together with the fragment of the parabola

\[y = x^2 \quad (0 \leq x \leq m)\]

encloses a region of area \(4/3\).

ANSWER:

\[y = 2x\]

SHOW YOUR WORK: The area below \(y = x^2\) from \(x = 0\) to \(m\) is found to be \(\int_0^m x^2 \, dx = m^3/3\). Thus the area between \(y = m^2x\) and the parabola is \((m^3/2) - (m^3/3) = m^3/6\). For \(m^3/6 = 4/3\) we need \(m = 2\).
13. A bacteria-infested swimming pool was chemically treated this morning, and since then, the bacteria count has been decreasing at rate proportional to the count itself.

An hour ago, the count was a third of what it was two hours ago. For safety, the count must be \(\leq 1\% \) of what it is now.

When will that be?

ANSWER: In about 4.2 hours

SHOW YOUR WORK: Let \(C(t) \) be the bacteria count at time \(t \). It is given that \(\frac{dC}{dt} = kC \), where \(k \) is a constant. This equation can be rewritten as \(\frac{d}{dt} \ln C = k \). Taking antiderivatives gives \(\ln C = kt + b \), where \(b \) is a constant. Hence \(C = Be^{kt} \), where \(B = e^b \). Let \(t \) be measured in hours from "now". Then \(C(-1) = (1/3)C(-2) \) tells us that \(e^k = 1/3 \). Clearly, \(C(0) = B \). So for the count to be \(\leq B/100 \) we need \(e^{kt} < 100 \), which is \((1/3)^t \leq 1/100\). Rearranging we get \(3^t \geq 100 \), which means \(t \geq (\ln 100)/(\ln 3) = \log_3 100 \approx 4.2 \).

14. Let \(f(x) = 2x^4 - 3x^3 + 5x^2 - 3x + 2 \).

(a) Find the line tangent to \(y = f(x) \) at \(x = 0 \).

ANSWER: \(y + 3x = 2 \)

SHOW YOUR WORK: The point on \(y = f(x) \) at \(x = 0 \) is \((0, f(0)) = (0, 2) \). By inspection, \(f'(0) = -3 \). Hence the tangent at \((0, 2) \) is \(y + 3x = 2 \).

(b) Show that the line found in (a) intersects \(y = f(x) \) only at \(x = 0 \).

EXPLANATION: The graphs of \(y = f(x) \) and \(y + 3x = 2 \) intersect where \(f(x) = 3x + 2 \). This gives
\[
2x^4 - 3x^3 + 5x^2 - 3x + 2 = -3x + 2.
\]
Simplifying, we get
\[
x^2(2x^2 - 3x + 5) = 0.
\]
Since the discriminant of \(2x^2 - 3x + 5 \) is \((-3)^2 - 4 \cdot 2 \cdot 5 = -31 < 0 \), the quadratic has no real solutions. Thus \(x = 0 \) is the only solution.

(c) Use a linear approximation to estimate \(f(0.01) \).

ANSWER: \(f(.01) \approx 1.97 \)

SHOW YOUR WORK: The linear approximation is \(f(0) + (.01)f'(0) = 2 - 3(.01) \).
(d) Let a real number a be given as well as the exact value of $f(a)$. Now suppose that a linear approximation is used to estimate $f(a + 0.01)$. Show that the estimate will be an underestimate whatever the value of a.

EXPLAIN: The intuition is that the estimate will always be an underestimate provided $f'(x)$ is increasing on $(-\infty, \infty)$. Now $f''(x) = 24x^2 - 6x + 10$ has no zeroes because the discriminant is < 0. Hence $f''(x)$ has the same sign for all $x \in (-\infty, \infty)$. Since $f''(0) = 10$, $f''(x) > 0$ for all x. Hence, by the Mean Value Theorem (MVT), $f'(x)$ is an increasing function.

The difference between $f(a + .01)$ and the linear estimate is

\[f(a + .01) - [f(a) + (.01)f'(a)] = [f(a + .01) - f(a)] - (.01)f'(a) = (.01)f'(c) - (.01)f'(a) \]

for some $c \in (a, a + .01)$ by the MVT. Since $c > a$, it is clear that the value $f(a + .01)$ is greater than the estimate.

Those familiar with the Lagrange form of the remainder for a Taylor series may choose to point out that there exists $c \in (a, a + .01)$ such that

\[f(a + .01) = f(a) + (.01)f'(a) + \frac{(.01)^2}{2}f''(c). \]