Answers for Sample Exam #3

1. a)
$$\cos 3x - 3x \sin 3x$$

b)
$$-(x+1)^{-1/2}(x-1)^{-3/2}$$
 OR...

c)
$$\frac{32}{(1-4x)^3}$$
 OR...

2.
$$k = \ln 10$$

3.
$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{\frac{5}{5+3h} - 1}{h} = \lim_{h \to 0} \frac{-3h}{h(5+3h)} = -\frac{3}{5}$$

4.
$$-\frac{4}{10}$$
 OR $-\frac{2}{5}$ OR -0.4 ; $\frac{768}{1000}$ OR ...

- 5. $\frac{1}{\pi}$; Rewrite the limit as $\lim_{x\to 0} \left[e^{3x} \cos(\pi x) \frac{\pi x}{\pi \sin(\pi x)} \right]$. Since $\lim_{u\to 0} e^u = \lim_{v\to 0} \cos v = 1$, we need only find $\lim_{w\to 0} \frac{w}{\sin w}$, which is 1 by a standard result.
- 6. $a = \frac{1 \pm \sqrt{5}}{2}$ (the calculator approximations are not enough)
- 7. If the initial mass is 100, the mass at time t is $M(t)=100e^{-kt}$, where $k=(\ln 4)/27$. Since M(t)=a if and only if t=f(a), this equation can be rearranged to give $f(a)=27\left(\frac{\ln 100-\ln a}{\ln 4}\right)$.
- 8. 4.004
- 9. 6000 meters
- 10. $\sqrt{2+\sqrt{2}}$ by $\sqrt{2-\sqrt{2}}$ OR $2\cos(\pi/8)$ by $2\sin(\pi/8)$ OR even 1.8477591 by 0.7653669.
- 11. 1.2 radians per minute
- 12. $\sqrt{3}/2$ OR 0.8660254

13. a)
$$c = 0.06$$
, $k = -0.002$

b)
$$\frac{dW}{dt} = kW$$

c)
$$W = 0.06e^{-0.002t}$$
, $V = 30(1 - e^{-0.002t})$