Answers for Sample Exam #1

- 1. a) $2 \sec^2 x \tan x$, OR $\frac{2 \sin x}{\cos^3 x}$ OR $(2 \sin x)(\cos x)^{-3}$ OR ...
 - b) $\arctan x \text{ OR } \tan^{-1} x$
- 2. $2^{-2}+(3)(5)(\ln 2)(2^{-2})$ (acceptable) OR $\frac{1+15\ln 2}{4}$ (more attractive) OR even 2.8493019 (but why bother?)
- 3. $\frac{4}{3}$ (best) OR 1. $\overline{3}$ (?) OR (probably) 1.33333
- 4. a) $y = \frac{x-1}{4} + \frac{1}{2} \text{ OR } y = x/4 + 1/4, \text{ OR } \dots$
 - b) 0.55 (best) OR (1.2-1)/4+1/2
- 5. a) 4
 - b) leftward OR toward the origin
 - c) decreasing
- 6. a) $-\frac{\sin x}{|\sin x|}$, OR -1 when $\sin x > 0$ and 1 when $\sin x < 0$, OR -1 for $2k\pi < x < (2k+1)\pi$ and 1 for $(2k+1)\pi < x < (2k+2)\pi$, where k is an integer
 - b) when x is an integer multiple of π (best) OR when $\sin x = 0$.
- 7. $6\sqrt{2}$
- 8. f(z) = -10z
- 9. a) Let $f(x) = x e^{-x}$. Since f is continuous and f(0) < 0 and f(1) > 0, there is a real number r between 0 and 1 such that f(r) = 0 (Intermediate Value Theorem). So the equation $x = e^{-x}$ has at least one root. Since $f'(x) = 1 + e^{-x}$, and $1 + e^{-x} > 0$ for all x, the function f is increasing, so f(x) = 0 for at most one value of x. Thus there is exactly one root.

OR Sketch y = x and $y = e^{-x}$, showing the point of intersection. The shapes of these curves can be taken as "known."

b)
$$x_{n+1} = x_n - \frac{x_n - e^{-x_n}}{1 + e^{-x_n}}$$
 (acceptable) OR $x_{n+1} = x_n - \frac{x_n e^{x_n} - 1}{e^{x_n} + 1}$ OR $x_{n+1} = \frac{x_n + 1}{e^{x_n} + 1}$

10. a) $\left(\frac{1 - \ln x}{x^2}\right) x^{1/x}$, OR $\left(\frac{1 - \ln x}{x^2}\right) e^{\frac{\ln x}{x}}$

b) x = e

c) Since f'(x) < 0 when x > e, the function f is decreasing from x = e on, so $3^{1/3}$ is larger than $\pi^{1/\pi}$. (Simply writing that $3^{1/3}$ is about 1.44225 while $\pi^{1/\pi}$ is about 1.43962 is not adequate.)

11. 2

12. a) f(x) is decreasing on the interval $\infty < x \le 0$, increasing on the interval $0 \le x \le 2$, decreasing on $2 \le x < \infty$ OR f(x) is decreasing on $(-\infty,0]$, increasing on [0,2], decreasing on $[2,\infty)$; f(x) has a local minimum at x=0, a local maximum at x=2

b) concave upward on the interval $-\infty < x < 2 - \sqrt{2}$, concave downward on $2 - \sqrt{2} < x < 2 + \sqrt{2}$, concave upward on $2 + \sqrt{2} < x < \infty$; inflection points at $2 \pm \sqrt{2}$

c) $+\infty$

d) The (positive) x-axis is the only asymptote. The information given so far should be enough to produce a reasonable sketch. Experts will of course recognize $k = \frac{1}{2}e^2$ and $f(x) = \frac{1}{2}x^2e^{2-x}$; knowing this will allow anyone with a graphing calculator to check their answer.

13. $10\frac{\ln(4/3)}{\ln(10/9)}$ (days) after the beginning OR any equivalent expression OR t is about 27 days

14. 2π OR (ugh!) 6.28