Calculus Challenge Exam UBC • SFU • UVic • UNBC

June 8, 2017, 12:00-15:00 PDT

Name:	
Signature:	
School:	
Candidate number:	

Rules and instructions:

- 1. Show all your work! Full marks are given only when the answer is correct, and is supported with a written derivation that is orderly, logical, and complete. Part marks are available in every question.
- 2. Calculators are optional, not required. Correct answers that are "calculator ready," like $3+\ln(7)$ or e^2 , are fully acceptable.
- 3. Only dedicated calculators with cleared memories and no graphing capabilities may be used.
- 4. A formula sheet will be provided to you. No other notes, books, or aids are allowed. In particular, all calculator memories must be empty when the exam begins.
- 5. If you need more space to solve a problem on page n, work on the back of page n-1.
- 6. Candidates guilty of any of the following or similar practices shall be dismissed from the examination immediately and assigned a grade of 0:
 - (a) Using any books, papers or memoranda.
 - (b) Speaking or communicating with other candidates.
 - (c) Exposing written papers to the view of other candidates.
- 7. Do not write in the grade box shown to the right.

For examiners' use only						
Question	Points	Score				
1	39					
2	8					
3	10					
4	15					
5	10					
6	10					
7	8					
Total	100					

- 1. [39 marks] Each part is worth 3 marks. Write your final answer in the box where there is a box provided. No credit will be given for answers without accompanying work.
 - (a) Determine where the function $f(x) = \ln(3 \ln(x))$ is defined.

Answer:

(b) Evaluate the limit $\lim_{x\to 0} \frac{x}{\sqrt{x+4}-2}$.

(c) Evaluate the limit $\lim_{x\to\infty} \frac{2x^{5/2}\sqrt{7x+1}}{x+3x^2-5x^3}$.

Answer:

(d) Evaluate the limit $\lim_{x\to 0} \sqrt{x} \sin\left(\frac{1}{x}\right)$.

Answer:

(e) Give an example of a function with exactly one vertical asymptote, at x=-3; and exactly one horizontal asymptote, at $y=\pi$.

(f) Explain why the curve $y + 2^x = \cos(x^2)$ crosses the x-axis at least once.

(g) Let f(x) be a differentiable function with three roots. Explain why f'(x) has at least two roots.

(h) Let f(x) be a function satisfying $f'\left(\sqrt{2}\right) = \sqrt{3}$, and $g(x) = f\left(2\sin(x)\right)$. Calculate $g'\left(\frac{\pi}{4}\right)$. Simplify your answer completely.

(i) Find the slope of the line tangent to the curve $x^4 - x^2y + y^4 = 1$ at the point (1, 1).

Answer:

(j) Find an expression for L(x), the linear approximation of $f(x) = \frac{3x^2}{x^2-1}$ at x=2.

Answer:

(k) Find the derivative of $f(x) = x^x$.

(l) Give an example of a function	f(x) satisfying $2f'(x) = 3f(x)$ and $f(0) = 4$
-----------------------------------	---

Answer:

(m) Give an example of a function that has exactly two local extrema, at x=2 and x=3.

In the remaining problems, show all your work unless stated otherwise. Write your final answer in the box where there is a box provided. No credit will be given for answers without accompanying work.

- 2. [8 marks] Let g(x) be differentiable and nonzero everywhere.
 - (a) State the limit definition of g'(x). (You do not have to show your work.)

Answer:			

(b) Use the limit definition of derivative to find the derivative of $\frac{1}{g(x)}$.

3. [10 marks] Let $f(x) = x^2 + x$.

(a) Find the equation of the line tangent to the curve y = f(x) at (-1,0).

Answer:

(b) Find both points on the curve y = f(x) such that the tangent lines at the points pass through (1,1).

4. [15 marks] Let $f(x) = \frac{\sqrt{x}}{e^x}$.

(a) State the domain of f(x). (You do not have to show your work.)

Answer:

(b) Determine if f(x) has any horizontal asymptotes.

Answer:

(c) Determine if f(x) has any vertical asymptotes.

Answer:

(d) Calculate f'(x).

Answer:

(e) Calculate f''(x).

(f)	Determine decreasing.	the	intervals	where	f(x)	is	increasing,	and	the	intervals	where	f(x)	is
							Angwari						
							Answer:						
(g)	Determine concave do	the wn.	intervals	where	f(x)	is	concave up,	, and	the	intervals	where	f(x)	is
							Answer:						

(h) Draw a large sketch of the graph of $f(x)$ below, making sure to include all the features determined in parts (a) through (e).	

5. [10 marks] Consider a wheel of radius 1 m. A tight elastic band connects the point A, a distance 2 m away from the wheel, to the point P on the wheel. P starts off in the "nearest horizontal position" 2 m away from A. The wheel turns in a clockwise direction at a constant rate of 1 full rotation every 12 seconds. Find the rate at which the length of the elastic band is increasing 2 seconds after the wheel begins to turn.

6. [10 marks] Consider two right triangles of base b and height h oriented in opposite directions and overlapping, as shown below.

Find x such that the shaded area is maximal. Your answer may be in terms of b or h (or both).

7. [8 marks] Let f(x) be a differentiable function satisfying

$$f'(x)e^{\cos(x)} - f(x)e^{\cos(x)}\sin(x) = x^{2.1}$$
 and $f(0) = 2$.

(a) Let g(x) and h(x) be differentiable functions. State the formula for the derivative of the product g(x)h(x). (You do not have to show your work.)

Answer:		

(b) Find f(x). (Hint: antidifferentiate both sides.)