SFU-UBC-UNBC-UVic

Calculus Challenge Exam

June 10, 2010, 12:00-15:00

Name:			(please print)
	family name	given name	
School:			
Signature:			

Instructions:

- 1. Show all your work. Full marks are given only when the answer is correct, and is supported with a written derivation that is orderly, logical, and complete.
- 2. A non-graphing, non-programmable calculator which meets ministry standards for the Provincial Examination in Principles of Mathematics 12 may be used. However, calculators are not needed. Correct answers that are calculator ready, like 3+ln7 or e^2 , are preferred.
- 3. A basic formula sheet has been provided. No other notes, books, or aids are allowed. In particular, all calculator memories must be empty when the exam begins.
- 4. If you need more space to solve a problem, use the back of the facing page.
- 5. CAUTION Candidates guilty of any of the following or similar practices shall be dismissed from the examination immediately and assigned a grade of 0:
 - (a) Using any books, papers or memoranda.
 - (b) Speaking or communicating with other candidates.
 - (c) Exposing written papers to the view of other candidates.

Question	Maximum	Score
1	6	
2	8	
3	6	
4	6	
5	6	
6	6	
7	10	
8	8	
9	8	
10	6	
11	8	
12	8	
13	8	
14	6	
Total	100	

1. For each of the following evaluate the limit if it exists or otherwise explain why it does not exist.

[2] (a)
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$$

[2] (b)
$$\lim_{x \to -4^-} \frac{|x+4|}{x+4}$$

[2] (c)
$$\lim_{x \to \infty} \frac{x}{\sqrt{1 + 2x^2}}$$

2. Differentiate each of the following with respect to x.

[2] (a)
$$y = e^{4x}$$

[2] (b)
$$y = \frac{3x-5}{x^2+1}$$

[2] (c)
$$y = x \ln(x^2 + 4)$$

[2] (d)
$$y = \sin(x^2) - \sin^2(x)$$

[6] 3. Use the definition of derivative to find f'(x) where $f(x) = \sqrt{2x+1}$.

4. Evaluate the following antiderivatives.

[2] (a)
$$\int \left(\frac{1}{2}x^2 - 2x + 6\right) dx$$

[2] (b)
$$\int (3e^x + 7) dx$$

[2] (c)
$$\int (2\sqrt{x} + 6\cos x) dx$$

[6] 5. Find the area of the region bounded by the curves y=x and $y=x^2$. Sketch the graph.

6. In this question we investigate the solution of the equation

$$2x = \cos x.$$

[3] (a) Explain why you know the equation has **at least** one solution.

[3] (b) Use Newton's Method to approximate the solution of the equation by starting with $x_1=0$ and finding x_2 . (Note that you are being asked to find only one iteration of Newton's Method.)

$$f(x) = e^{1/x}$$
 $f'(x) = -\frac{e^{1/x}}{x^2}$ $f''(x) = \frac{e^{1/x}(2x+1)}{x^4}$

- [1] (a) What is the domain of f?.
- [1] (b) Determine any points of intersection of the graph of f with the x and y axes.
- [1] (c) Use limits to determine any horizontal asymptotes of f.
- [1] (d) Use limits to determine any vertical asymptotes of f.
- [1] (e) For each interval in the table below, indicate whether f is increasing or decreasing.

interval	$(-\infty,0)$	$(0,\infty)$
f(x)		

[1] (f) Determine the x coordinates of any local maximum or minimum values of f.

[1] (g) For each interval in the table below, indicate whether f is concave up or concave down.

interval	$(-\infty, -1/2)$	(-1/2,0)	$(0,\infty)$
f(x)			

[1] (h) Determine the x coordinates of any inflection points on the graph of f.

[2] (i) Which of the following best represents the graph of y=f(x)? Circle only one answer.

[4] 8. (a) Suppose that we do not have a formula for g(x) but we know that g(2)=-4 and $g'(x)=\sqrt{x^2+5}$ for all x. Use a linear approximation to estimate g(2.05).

[4] (b) Is the estimate obtained in part (a) an overestimate or an underestimate of the actual value of g(2.05)? [Hint: Consider g''(x).]

9. A particle moves along a line with a position function s(t), where s is measured in meters and t in seconds. Four graphs are shown below: one corresponds to the function s(t), one to the velocity v(t) of the particle, one to its acceleration a(t) and one is unrelated.

[3] (a) Identify the graphs of s(t), v(t) and a(t) by writing the appropriate letter (A,B,C,D) in the space provided next to the function name. (The position function s is already labeled.)

$$s = \underline{\hspace{1cm}}$$
 , $v = \underline{\hspace{1cm}}$, $a = \underline{\hspace{1cm}}$

[4] (b) Find all time intervals when the particle is slowing down, and when it is speeding up. Justify your answer.

[1] (c) Find the total distance travelled by the particle over the interval $3 \le t \le 9$.

10. A race car is speeding around a race-track and comes to a particularly dangerous curve in the shape $y^2=x^3+5x^2$. The diagram below indicates the direction the car is traveling along the curve.

[2] (a) Find the derivative of y with respect to x.

[3] (b) If the car skids off at the point (-4,4) and continues in a straight path find the equation of the line the car will travel in.

[1] (c) If a tree is located at the point (-1,6.5) with a lake to the left and cows to the right, will the car hit the lake, the tree or the cows?

- 11. A cup of coffee, cooling off in a room at temperature 20°C , has cooling constant $k=0.09\text{min}^{-1}$. Assume the temperature of the coffee obeys Newton's Law of Cooling.
- [4] (a) Show that the temperature of the coffee is decreasing at a rate of 5.4°C/min when its temperature is $T=80^{\circ}\text{C}$.

[4] (b) The coffee is served at a temperature of 90° . How long should you wait before drinking it if the optimal temperature is 65°C ? (It is preferred that you leave your answer in the exact form. i.e. as an expression that contains powers of e and/or logarithms.)

[8] 12. A boat is pulled into a dock by means of a rope attached to a pulley on the dock. The rope is attached to the bow of the boat at a point 1 m below the pulley. If the rope is pulled through the pulley at a rate of 1 m/sec, at what rate will the boat be approaching the dock when there is 10 m of rope between the pulley and the boat?

[8] 13. A water trough is to be made from a long strip of tin 6 ft wide by bending up at an angle θ a 2 ft strip at each side. What angle θ would maximize the cross sectional area, and thus the volume, of the trough?

[6] 14. Find a function f such that $f'(x)=x^3$ and the line x+y=0 is tangent to the graph of f.

Formula Sheet

Exact Values of Trigonometric Functions

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	$2\pi/3$	$3\pi/4$	$5\pi/6$	π
$\sin \theta$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0
$\cos \theta$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1/2	$-\sqrt{2}/2$	$-\sqrt{3}/2$	-1

Trigonometric Definitions and Identities

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

$$\sin(\theta \pm \phi) = \sin\theta\cos\phi \pm \sin\phi\cos\theta$$

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2\theta = \frac{1 + \cos(2\theta)}{2}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\sec \theta = \frac{1}{\cos \theta}$$

$$\cot\theta = \frac{\cos\theta}{\sin\theta}$$

$$\csc\theta = \frac{1}{\sin\theta}$$