
UBC Workshop Solutions B

1. Three runners compete in a 100 meter race. How many possible orders of
finish are there, if ties are allowed?

Solution. The runners are of course called A, B, and C. Now we must
patiently list all the possible orders of finish. There are not many.

Count first the orders of finish with no ties. Any one of the 3 runners
could be first. Let’s count how many orders of finish there are with say A
first: clearly there are 2. And there are 2 with B first, 2 with C first, for
a total of 6.

Now count the number of orders of finish with exactly 2 runners tied.
They could be (i) tied for first or (ii) tied for last.

To count the orders of finish with two people tied for first, think of the last
runner. She can be chosen in 3 ways. Once that is done, we are finished.
Similarly, there are 3 orders of finish with exactly 2 runners tied for last,
for a total of 6.

And of course there is the possibility of a triple tie. Thus overall there are
6 + 6 + 1 possible orders of finish.

Comment : If someone finds three runners too simple, perhaps she can
look at four runners (the answer is 75). The counting can be done as
follows.

The number of orders of finish with no ties is 24 (4!). For the number
of orders of finish with a single tie, the people to be tied together can be
chosen in

(
4
2

)
, that is, 6 ways. Then we can think of them as three people,

and they can finish in 3! orders, giving a total of 36 ways. There are 4
ways of choosing three people to be tied together, and for each there are
2 orders of finish, for a total of 8 ways. And there is the 1 quadruple tie.
The counting gets tricky when we deal with the number of ways that we
can have a “tie for first and tie for last.” Here we choose the pair of people
who will tie for first (6 ways). Once this is done we are finished, we must
not double.

2. An arena has 21000 seats. It is divided into four sections. Section A has
twice as many seats as Section B. Section C has twice as many seats as
Section D. Section B has 1000 more seats than Section D. How many seats
are in each section?

Solution. For people who are comfortable with basic algebra, it is natural
to let x be something or other, maybe the number of seats in D—that way
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we can avoid subtraction and fractions for a while.

So C has 2x seats, B has x + 1000, A has 2x + 2000. Add up. We get
6x+ 3000 = 21000, so x = 3000 and we are finished.

Or else we could start with four letters a, b, c and d, write down the obvious
equations and simplify. But at this stage students are not comfortable with
several variables. This discomfort has long historical roots. Diophantus
and early Islamic mathematicians such as al-Khwārizmı̄ dealt with some
degree of comfort with a single “unknown.” But many hundreds of years
elapsed before mathematicians handled several variables with confidence.

Another way : We could also probably guess and refine. This works fast
since the answer is too simple. Maybe guess that D has 0 seats? Then C
also has 0, B has 1000, A has 2000, for a total of 3000, not enough. Maybe
now guess 1000 for D. That gives arena size 9000. In fact adding 1 person
to our guess for D adds 2 to C, 1 to B, 2 to A, so adds 6 people. We want
to get from 3000 to 21000, need to add 6 people 3000 times, giving 3000
people for section D. (A very good guess for the size of D is −500.)

Another way : Or else first deal with the 1000 “extra” seats that B has,
and therefore the 2000 extra that A has. Remove these, we have 18000.
And now A and B clearly balance C and D, so C and D have 9000, and
therefore D has 3000.

There are other ways of reasoning the problem through. A picture can be
useful.

3. A sports league has two conferences, East and West. Each conference has
10 teams. Every year, each team plays every team in its conference twice
and plays every team in the other conference once. What is the total
number of games played in the league during the year?

Solution. First look at the total number of games between teams of the
Western Conference. Since each team plays every team in its conference
twice, we can think of these two games as being “home” and “away.”

Call the teams of the Western Conference W1, W2, W3, . . . , W10. Looks
nice on a team sweater. Let’s count the number of home games between
Western Conference teams. Since any game is a home game for one of the
teams, we will have counted all games between Western Conference teams.
Each team, like W1, plays 9 home games against Western Conference
Teams. But there are 10 teams, so the number of games is 90.

By symmetry there are 90 games between Eastern Conference Teams.

Now we need to count the number of inter-conference games. Team W1

plays 10 such games, as does W2, and so on down to W10, a total of 100
games. But this is all the inter-conference games.

Thus the total number of games is 90 + 90 + 100.
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Suppose more generally that the Western Conference has m teams and
the Eastern Conference has n teams. The same argument shows that the
total number of games is

m(m− 1) + n(n− 1) + mn.

More generally suppose that any two teams in the Western Conference
play a games with each other, any two teams in the Eastern Conference
play b games with each other, and any two teams in different conferences
play c games. Then the total number of games is

am(m− 1)
2

+
bn(n− 1)

2
+ cmn.

Another way : It is informative to view things more geometrically. To
count the number of games between Western Conference teams, draw a
10× 10 array with rows and columns labelled with the team names. The
two games between every pair of teams are represented by the 90 entries
in the array (100 minus the 10 “diagonal” entries). If there were only one
game for each pair of teams, the games could be represented for example
by the 45 entries in the triangle above the main diagonal.

Representing the inter-conference games is even simpler: label the rows of
a 10×10 array with the Western Conference team names, and the columns
by the Eastern Conference team names.

Another way : Here is an argument that is at once simpler and harder.
Look at a particular team, say W1. This team plays 2 games against each
of the 9 Western Conference teams (18 games) and 1 each against the
10 Eastern Conference teams, for a total of 28 games. Each team in the
league does the same thing, for a total of (28)(20). Well, not really. When
we multiplied 28 and 20, we were counting twice each game that team
W1 played, once from W1’s point of view and once from the other team’s
point of view. So the total number of games is (28)(20)/2. Note that this
approach uses the symmetry between the two conferences.

4. A, B, C, and D are running a marathon along a straight road. As usual,
A is in front, B is next, C is behind B, and D is behind C. At this instant,
A is 1 mile ahead of C, B is 4 times as far from A as she is from C, and
D is also 4 times as far from A as she is from C. What is the distance, in
miles, between B and D?

Solution. If we look at the space between A and C (one mile) then maybe
it is clear, if we draw a little picture, that C is one-fifth of a mile behind
B, and B is four-fifth of a mile behind A.

Now look at the relationship between A, C, and D. So from A to D is four
‘parts’ while A to C is 3 parts. But A to C is one mile, so A to D is 1
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mile plus 1/3 of a mile. Because we are dividing a mile into 5 parts, and
also into 3 parts, it may be a good idea to break up the mile into 15 parts.
The rest is easy. Draw a line to represent the 1 mile distance between A
and C, and break it up into 15 equal parts. Then the rest can be figured
out: B to D is 8 parts, eight-fifteenths of a mile.

We can also use “fractions.” Fine of course, but a bit further from basic
intuition.

5. A poster is 40 centimeters wide. There are two pictures on the poster.
Each picture is 25 cm wide and 20 cm high. Together the pictures take
up one-third of the area of the poster. How many centimeters are in the
height of the poster?

Solution. The area taken up by each picture is 25×20, namely 500 (square
centimetres), so the two pictures together have area 1000. This is one-third
of the area of the poster, so the poster has area 3000. It has width 40, so
it has height 3000/40, that is, 75. Students can be guided to do mental
arithmetic: 3000/40 = 300/4 = 150/2 = 75.

6. How many positive integers are factors of 720? Here are a few of them: 1,
5, 8, 360, 720.

Solution. It turns out that there are 30 of them, so if we are going to make
a list it should be an efficient list. Maybe we should first factor 720:

720 = 24 × 32 × 5.

First look at the factors of 720 with no 2’s in them, that is, factors of
32 × 5. These perhaps can be listed explicitly: 1, 3, 5, 9, 15, 45, six of
them

Then look at the factors of 720 that have exactly one 2 in them. These
are all numbers which are twice numbers in our first list, explicitly 2, 6,
10, 18, 30, 90, but we don’t need to list them to see there are six.

Then look at the factors of 720 that have exactly two 2’s in them. These
are all numbers which are twice a number in the preceding list, or four
times a number in the first list, in all six numbers.

Then look at the factors of 720 that have three 2’s. There are six. And
there are six that have four 2’s. So the total is 6 + · · ·+ 6 (five sixes, 30).

Another idea, a bit unpleasant but not too bad, is to note that since
27 × 27 = 729, whenever we express 720 as a × b, the smaller of a or
b must be less than 27, and the bigger must be bigger than 27. So the
factors of 720 come in pairs (a, b) where a is less than 27 and b = 720/a.
Now start listing all the factors less than 27: 1, 2, 3, 4, 5, 6, 8, 9 ,10, 12,
15, 16, 18, 20, 24, fifteen in all. Then there are their fifteen mates, for a
total of 30.
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Or else we start from 720 = 24 × 32 × 5, and make up a divisor of 720
by first deciding how many 2’s we want (we can have 0 to 4 of them, 5
choices). For every choice of how many 2’s, we have 3 choices for how
many 3’s (0, 1, or 2), and 2 choices for how many 5’s (0 or 1). The total
number of choices is thus 5× 2.

It may be interesting to some students how one can find the number of
positive integer divisors of n where

n = pe11 p
e2
2 · · · pekk

where the pi are distinct primes. The same argument as the one above
shows that there are (e1 + 1)(e2 + 1) · · · (ek + 1) divisors.

7. A gambler is allowed to toss a fair coin six times. She wins if during the
tossing she gets three or more heads in a row or three or more tails in a
row. What is the probability that the gambler wins?

Solution. To solve this problem we need to know how many different “out-
comes” there are, that is, how many strings of length 6 made up of the
letters H and/or T. There are 26 such strings. A good way of showing this
is with a tree diagram.

Now we ask how many strings there are that have 3 or more heads in a
row or three or more tails in a row.

It is in principle not hard to count, but it would be nice to do the counting
reasonably efficiently.

Half of our strings start with H and half start with T. There is complete
symmetry, so we will count how many ways we can start with H and get
3 or more H or T in a row. And we will double the result to take care of
the strings that start with T.

We start with H. Maybe we get lucky and the first three tosses are H. The
number of strings of this type is 23, for after our three heads any pattern
of H and/or T is allowed. This gives 8 ways.

Maybe we got two H in a row and then (disappointingly) a T. We can still
win if (i) we now get three H in a row (1 way) or we get two more T, and
then anything (2 ways), for a total of 3 ways.

Maybe we got an H and then a T. If the next letter is an H, we are at
HTH, and now a couple of HH would be nice (2 ways, for last letter does
not matter) or three T (1 way). If the next lettter is a T, we are at HTT,
and another T will do the job (4 ways, for we don’t care about the last
two letters), or three H (1 way). The total here is thus 8.

So we have 19 winning patterns that begin with H, another 19 that begin
with T, for a total of 42. So the probablility our gambler wins is 38/64.
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Note that the probability is 59.375, likely higher than one might have
guessed. Winning and losing streaks are highly likely on purely proba-
bilistic grounds; sports fans assign to them much more significance than
they probably deserve.

8. Tom has a total of $3.30 in nickels and dimes. If his nickels were dimes
and his dimes were nickels, he would have $4.80. How many nickels and
how many dimes does Tom have?

Solution. We can solve the problem with least intellectual effort by using
“algebra.” Let x be the number of nickels and y the number of dimes.
Then the amount of money (in cents) is 5x + 10y. If nickels were dimes
and dimes were nickels then the amount of money would be 10x+ 5y. We
conclude that

5x+ 10y = 330 and
10x+ 5y = 480.

There are many ways of solving this system of equations. The most prim-
itive is to note from the first equation that 5x = 330 − 10y and there-
fore 10x = 660 − 20y. Substituting in the second equation we obtain
660− 20y + 5y = 480, and therefore 15y = 180, so y = 150/15 = 12. But
then 5x = 330− 120 = 210, so x = 42.

Or else we can add the two equations and obtain 15(x + y) = 810. It
follows that 5x+5y = 270 and therefore from 5x+10y = 330 we conclude
that 5y = 330− 270 = 60, so y = 12.

Another way : We can reason our way to an answer. It is clear that there
are more nickels than dimes (else when identities are switched the amount
of money goes down). So imagine a stack of dimes and a taller stack of
nickels. For simplicity of visualization let dimes and nickels have the same
thickness—they don’t.

When nickels are changed to dimes and dimes to nickels, the increase in
value is caused by the “extra” nickels, and is 5 cents for every extra nickel.
But the value climbed by 480−330 cents, that is, 150 cents. So the number
of extra nickels was 150/5, namely 30.

The rest of the $3.30, namely 330 − 150 cents, is evenly split between
nickels and dimes. How many of each? Weld each nickel to a dime to
make a 15 cent piece. We would have 180/15 of them, that is, 12. So Tom
has 12 dimes and 42 nickels.

Another way : Or else imagine that Tom has the $3.30 in his left pocket, and
the “switched” version in his right pocket. So he has a total of 3.30+4.80,
that is, 810 cents, and an equal number of nickels and dimes. Weld a
nickel and a dime together to make a 15 cent coin. We have 810/15 of
them, that is, 54.
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So Tom started off with 54 coins. If they had been all nickels he would
have only had $2.70. But he had $3.30, 60 cents extra. Trading in two
nickels for a dime gains 5 cents, so 12 trades are required to get to $3.30.
It follows that there were 12 dimes and therefore 42 nickels.

Another way : Or else let’s “guess” what the number of nickels is, and then
make an improved guess, and then perhaps another, until we reach the
answer. Ideally we would make only a small number of guesses, and they
should not really be guesses.

Let us guess for example that the coins are all nickels. This is wrong,
because if they were, then when nickels are changed to dimes and dimes
to nickels, we would have $6.60, not $4.80. So imagine trading in two
nickels for a dime, maybe repeatedly. Any such trade leaves us at $3.30,
but when identities of coins are switched, we lose 15 cents, 10 cents for the
nickels that did not become dimes, and 5 cents for the dime that became
a nickel. We want to go down from $6.60 to $4.80, so by 180 cents. The
number of trades is therefore 180/15, that is, 12, and Tom has 12 dimes.

9. Let x ∗ y =
x

x+ y
. If x ∗ y = 9, what is y ∗ x?

Solution. We start with the equation x/(x + y) = 9. We can manipulate
our way to success. For x = 9x + 9y. Thus 9y = −8x and therefore
y = (−8/9)x.

Now we can find y ∗x, that is, y/(x+y). Note that x+y = x+(−8/9)x =
x/9, and therefore

y

x+ y
=

(−8/9)x
x/9

= −8.

Another way: We can do the same thing in a slightly easier way. Note
that x∗y and y ∗x are both determined by the ratio of x and y. So we can
choose x or y or x+y almost freely: of course we must not have x+y = 0.
For the sake of symmetry, let’s pick x+ y, say it is 1. Then from x ∗ y = 9
we conclude that x = 9. But then y = −8. But then y ∗ x = −8.

Another way : Even this is too complicated. Note that

(x ∗ y) + (y ∗ x) =
x

x+ y
+

y

x+ y
= 1

so x ∗ y = 1− 9 = −8.

Another way : We could work harder, maybe like this. Since x/(x+y) = 9,
we have (x + y)/x = 1/9, so 1 + y/x = 1/9 and therefore y/x = −8/9.
Now work backwards. We have x/y = −9/8 and therefore 1+x/y = −1/8
and therefore y/(x+ y) = −8.
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10. The plane was full when it left Vancouver. In Seattle, half the people got
off and 28 got on. In Portland, half the people got off, 40 got on, and
the plane was full again. How many people were on the plane when it left
Vancouver?

Solution. It is not unreasonable to find our way by experimenting. Hard
to know what guess we would start with. Say 40. The 48 people leave
Seattle, and therefore 64 leave Portland. Is 40 too big or too small? Maybe
it is not obvious.

Try for what next? Maybe 41? So 41/2 + 28 leave Seattle. Possible but
perhaps a bit gruesome. And 42 gives us the same problem of half a person
when we leave Portland. And of course 43 is no good. Try 44.

So 50 leave Seattle, 65 leave Portland. Still not good, but 44 is closer to
65 than 40 was to 64. Maybe try for 48 out of Vancouver. Then get 66
out of Portland. Interesting pattern! We add 4 to the number leaving
Vancouver, and the number out of Portland rises only by 1, so the “gap”
went down by 3.

With this observation we can finish things. At 40 the gap between Van-
couver and Portland was 24. Going up by 4 in Vancouver closes the gap
by 3. We nedd eight 3’s to get rid of the gap of 24. So in Vancouver we
should go up by 8 4’s, that is by 32, up to 72. Check. It works.

A good way to handle things is with proto-algebra. Maybe represent the
number of people leaving Vancouver by a line. Then out of Seattle come
half the line plus 28. Out of Portland come half of half the line plus 14
plus 40, that is, a quarter of the line plus 54. And this is the whole line.
Then we can do arithmetic, but maybe it is better, since one-quarter of
the line comes into the game, to think of the people leaving Vancouver
(the original line segment) as being made up of 4 equal line segments.
After a while we get that 3 of the chunks add up to 54 so one chunk is 18
and 4 chunks give 72.

Of course we could go through the x business. So there are x when we
leave Vancouver, then x/2+28 leave Seattle, and 1/2(x/2+28)+40 leave
Portland. But this is x. So

1/2(x/2 + 28) + 40 = x.

How to solve this is maybe not obvious. One way is to multiply through.
But another, for the fraction-challenged, is to “unravel” it, 1/2(x/2+28) =
x − 40, so x/2 + 28 = 2x − 80, so x/2 = 2x − 108, so x = 4x − 216, so
3x = 216.

11. If n is a positive integer, then n! (read this as “n factorial,” or “factorial
n”) is the product of all the numbers from n down to 1. For example,

4! = 4× 3× 2× 1 = 24, 5! = 5× 4× 3× 2× 1 = 120.
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Find the highest power of 2 that divides 32!. For example, the highest
power of 2 that divides 5! is 23.

Solution. We have

32! = 1× 2× 3× 4× 5× · · · × 30× 31× 32.

We can see how many 2’s there are “in” each of 1, 2, 3, 4, 5, . . . , 32, and
add up.

There are no 2’s “in” 1, 3, 5, 7, . . . , 31. The number 2 has one two in
it (1), the number 4 has two 2’s in it (2), the number 6 has one (1), the
number 8 has three (3), the number 10 has one (1), the number 12 has
two (2), and so on. Add up. It is not too bad.

We can save quite a few steps by noting that the numbers 2, 6, 10, 14, 18,
22, 26, 30 each have one 2, for a total of 8. And 4, 12, 20, 28 have two,
for a total of 8. And 8, 24 have three, for a total of 6. And 16 has 4, and
32 has 5. Add; we end up with 31. So the highest power of 2 that divides
32! is 231.

There is a much nicer way of looking at things. Imagine that each of the
numbers from 1 to 32 has to pay a one-dollar tax for each 2 in it. So for
example the number 8 pays a tax of $3.

Collect one dollar from each of the 32/2 even numbers from 1 to 32. Some
numbers, like 4, 8, and so on still owe tax. Collect a dollar from each of
the 32/4 multiples of 4 from 1 to 32. The numbers 8, 16, and so on still
owe money. Collect a dollar from each of the 32/8 multiples of 8, a dollar
from each of the 32/16 multiples of 16, and finally a dollar from each of
the 32/32 multiples of 32. Now everyone has paid the proper tax, which
adds up to

32/2 + 32/4 + 32/8 + 32/16 + 32/32

that is 31.

Let p be a prime. A mild modification of the idea above enables us to
calculate the highest power of p that divides n!.

12. A paper drinking cup is cone-shaped. When there is water in the cup to
a depth of 4 inches, the cup contains 16 cubic inches of water. How many
cubic inches of water are in the cup when the water is 3 inches deep?

Solution. It is tempting to first reach for a formula, and then for a cal-
culator. If a cone has height h and ‘base’ radius x, then its volume V is
given by

V =
πx2h

3
.

It would be easy to compute the volume of water when the depth is 3 inches
if we knew the base radius r. We don’t know r, but we can compute the
base radius R when the depth of water is 4 inches.
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When the water cone has height 4, our cup contains 16 cubic inches. It
follows that 16 = 4πR2/3, and therefore

R =

√
(16)(3)

4π
.

Comment : At this point many would reflexively reach out for the calcula-
tor and compute R to some number of decimal places. This is a very bad
habit. Our expression for R has structure. Pushing it through a calculator
turns a structured object into a jumble of digits.

The two water cones are similar. It follows that

r

R
=

3
4

and therefore r = (3/4)
√

(16)(3)/(4π).

Now we can compute the volume of water, namely 3πr2/3. If we use the
value of r found above, we get quickly that the volume is (3)(3/4)2(16)/4
(the π’s cancel). Now, with calculator or without, we find that the volume
is 6.75 cubic inches.

Another way : There is a much better way of looking at the problem—
so much better that the solution we have just given should be called the
wrong solution.

The ‘small’ water cone is just a scaled down version of the big water cone.
The linear scaling factor is 3/4, that is, all lengths get multiplied by 3/4.
If we multiply the dimensions of an object by the linear scaling factor t,
then areas scale by the factor t2, and volumes scale by t3. So the volume
of our small water cone is (3/4)3(16).

13. Ten consecutive odd integers add up to 800. What is the smallest of these
integers? An example of 10 consecutive odd integers is 7, 9, 11, 13, 15,
17, 19, 21, 23, 25—but they don’t add up to 800.

Solution. Here is an ugly solution. Let the smallest number be x. Let’s
not worry too much about whether it is odd or not. Then the others are
x + 2, x + 4, . . . , x + 18. Add up, we get 10x+ 90, which is 800, giving
x = 71. Since 71 is an odd integer, 71, 71 + 2, 71 + 4, . . . , 71 + 18 are
consecutive odd integers, and they have the right sum, so the answer is
71.

Comment : The last sentence is not quite superfluous. Let us change the
problem slightly to “Ten consecutive odd integers add up to 790. What is
the smallest of these integers?” A calculation almost identical to the one
above gives x = 70, which is clearly wrong, 70 is not odd. In general when
we write “Let x = . . . ” we are making the implicit assumption that an
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object with the desired properties exists. If this is not true, conclusions
that we draw about x will be wrong.

Another way : Here is something a little more attractive. Look at the two
middle numbers, and let x be the number halfway between them. So the
numbers are x− 9, x− 7, x− 3, x− 1, x+ 1, x+ 3, x+ 5, x+ 7. Add up,
grouping in the obvious way. We get 10x = 800, x = 80, so our numbers
are all odd and the smallest is 80− 9.

Another way : Or else “guess” that the numbers are 1, 3, 5, 7, 9, 11, 13,
15, 17, 19. Add up, we get 100, bad guess, the sum is off by 700. So add
70 to each number, the sum is right!

Another way : A cute (maybe too cute) idea is to “guess” that the numbers
are −9, −7, −5, −3, −1, 1, 3, 5, 7, 9. Spectacularly bad guess, but the
sum is easy to find, it is 0. If we add 80 to each number we get the right
sum.

Another way : Or else we can start from the sequence 80, 80, . . . , 80 (ten
80’s), which has the right sum but does not consist of consecutive odd
integers. We modifiy this sequence so as to keep the sum unchanged while
satisfying the “consecutive odd” condition. Change the two 80’s closest
to the middle to 79 and 81. So now we are at

80, 80, 80, 80, 79, 81, 80, 80, 80, 80.

Change the two 80’s closest to the middle to 77 and 83, then the two
remaining 80’s closest to the middle to 75 and 85, and so on until we get
to the sequence 71, 73, 75, 77, 79, 81, 83, 85, 87, 89.

Comment : It is worthwhile to think about generalizing. Let’s stick to
consecutive odd numbers, but look for n consecutive odd numbers whose
sum is S.

If there are such numbers, then n must be a factor of S. For if n is even
we can without loss of generality take the consecutive odd numbers to be
a± 1, a± 3, and so on. Their sum is an, a multiple of n. And if n is odd
we can take the numbers to be a, a± 2, and so on, again with sum an.

Now assume that S/n is an integer. Can we automatically find n odd
consecutive integers with sum equal to S? Not necessarily: the sum of an
odd number of odd numbers is odd, so if n is odd we must have S odd.
And if n is even, and we let the numbers be a± 1, a± 3, and so on, then
a = S/n, and therefore we are forced to have S/n even.

Apart from these restrictions, there is no problem. If n is odd, and S is
odd, and S/n is an integer (necessarily odd), we can use the numbers a,
a±2, a±4, and so on for a total of n numbers. And if n is even and S/n is
even, let a = S/n and use a± 1, a± 3, and so on for a total of n numbers.
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We can extend these observations to sums of consecutive members of an
arithmetic progression of integers with common difference d (we have just
dealt with d = 2).

By the way, the following problem has been discussed on the Secondary
math teachers’ listserv. Is it true that every positive integer which is not a
power of 2 can be expressed as the sum of two or more consecutive positive
integers? (Yes.) In how many ways?

14. How many ways are there to write down three numbers a, b, and c chosen
from the numbers 1, 2, 3, 4, . . . , 8, 9 so that a < b < c and a+ b+ c is a
multiple of 3? (One such triple of numbers is 4, 6, 8.)

Solution. We can make a list in some ad hoc way. There are some problems
with this. The process is uninteresting; it is error-prone; and if we want to
deal with a number significantly greater than 9, the listing becomes very
tedious.

There are various ways to imagine listing rather than actually listing.
Here is one way.

We can think of the process of writing down the numbers as taking place
in two steps: (i) We choose three numbers whose sum is a multiple of 3
and then (ii) We call the smallest one a, the second smallest b, and the
largest c.

Once we have done step (i), step (ii) can only be done in one way. So let’s
just look at step (i).

It is very useful to realize that the numbers 3, 6, and 9 are roughly speaking
interchangeable, since they are all divisible by 3. These numbers will be
called numbers of type 0. Similarly, 1, 4, and 7 have the same remainder on
division by 3. Call them numbers of type 1. And finally call the numbers
2, 5, and 8 numbers of type 2.

Three numbers x, y, and z have sum divisible by 3 if either they are all of
the same type, or they are all of different types.

Let’s first count how many ways we can choose 3 numbers all of the same
type. This is easy. The type is either 0, 1, or 2. And since there are only 3
numbers of each type, we have to pick all 3. So there are 3 ways to choose
3 numbers all of the same type.

Now let’s see how many ways there are to choose 3 numbers of different
types. First let’s choose the number of type 0; this can be done in 3 ways.
The number will be 3, 6, or 9.

We can draw this as a tree. From a “root” (placed on top!), draw 3 lines,
and label the ends, or the branches, 3, 6, and 9. Now look at the branch
labelled 3. We can pick the number of type 1 in 3 ways. Do the same with
the other two branches. Continue. We end up with 3× 3× 3 possibilities.

One can think of it as a mother (the root) having 3 children, and then
each child has 3 children, and each of these has 3 children. The root has
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33 great grandchildren. So there are 27 ways of picking three numbers of
different types.

It follows that there are 3 + 27 triples with the desired properties.

15. The interior of cooking pot A is a cylinder with base diameter 15 cm
and height 10 cm. The interior of cooking pot B is a cylinder with base
diameter 30 cm and height 40 cm. Pot A is filled with water and the
contents are poured into pot B. After this has been done a total of six
times, how many cm deep is the water in pot B?

Solution. We can trot out the machinery of volumes. The volume of the
small pot is π(15/2)2(10). If water is h centimetres deep in the big pot,
then the volume of water is π(30/2)2h. So to find how much one small
potful contributes to height in the big pot, we set

π(15/2)2(10) = π(30/2)2h

and after some cancellation (or a calculator computation) find that h =
10/4 = 2.5. So 6 potfuls give depth of 15 centimetres.

Another way : The big cooking pot has diameter twice the diameter of the
little one, so the area of the bottom of the big pot is 4 times the area of
the bottom of the little one. That means that 10 cm of water in the little
pot only give us 10/4 in the big pot. Repeat 6 times.

Note that everything would be intuitively obvious if pots had square
bases—four potfuls from A give us 10 cm in pot B.

16. Three swimmers had a race across a small lake. Each swam at constant
speed. When A finished, she was 20 metres ahead of B, and 40 metres
ahead of C. When B finished, she was 20.5 metres ahead of C. Over how
many metres was the race?

Solution. When A finished, B had 20 metres to go, and had a 20 metre
lead on C. While swimming 20 metres she built up her lead by 0.5 metres.

But B had built a lead of 20 metres over C. Since she increases the lead
by 0.5 metres for every 20 metres she swims, or by 1 metre for every 40,
she needs 40× 20 to build a lead of 20 metres. That gets B to 20 metres
from the end, so the length of the race is 820 metres.

17. Al and Bob are having a two lap race in a 30 metre pool. Al swims the
first lap freestyle at 2 metres per second. For the second lap he swims the
backstroke at 1 m/s. Bob swims the butterfly at 1.5 m/s for the entire
race. At what time(s) after the start will Al and Bob be side by side? (Al
and Bob are very small—in fact they are points.)

Solution. Bob swims 60 metres at 1.5 metres per second, so he takes 60/1.5
seconds, that is, 40 seconds. Al takes 30/2 seconds for the first lap and
30/1 for the second, for a total of 45. Al loses.

13



But it is clear that Al finishes the first lap well ahead of Bob. So Bob and
Al must meet once while Al is already on his second lap and Bob is still
on his first. And they must meet again before the end of the race, since
Bob will win.

“Algebra” gives us a fairly mechanical way of finding when they meet.
But the algebra must be guided by a geometric view of the race.

Let’s suppose Al and Bob first meet after t seconds. We have seen that
Al is already on his second lap, so t > 15. Al has travelled a length of the
pool, plus (1)(t− 15). And Bob has travelled a distance 1.5t. We have

(1)(t− 15) + 1.5t = 30,

and therefore 2.5t = 45, so t = 18. Thus Al is already 3 seconds (metres)
into his return trip; Al and Bob first meet 3 metres from the far end of
the pool.

For the second time that they meet, again let it be after t seconds. Then
Al has travelled a distance 30+(t−15). And Bob has travelled 1.5t. These
distance are equal, so 30 + (t − 15) = 1.5t. This simplifies to 15 = 0.5t,
giving t = 30. That’s 15 seconds (metres) into Al’s second lap, so Al and
Bob meet for the second time at the midpoint of the pool.

Once we know that they first meet 3 metres from the far end, we can solve
the problem without further algebra. For Bob needs to travel 2 seconds
to complete his first lap. In that time Al has travelled 2 metres, so is 5
metres ahead. Bob now gains half a metre a second, so needs 10 seconds
to catch Al. That puts him midway in the pool..

Another way: There is no need at all of formal algebra—some thinking
is enough. Let’s work backwards from the end. Bob took 40 seconds, Al
took 45. So Bob won by 5 seconds, and at that time Al was 5 metres from
finishing. Now run the movie backwards, so Al is swimming backwards at
1 metre per second, Bob at 1.5 metres per second, and Al has a 5 metre
“lead.” Bob gains half a metre a second, so in 10 seconds has caught up.
That’s 15 metres from the end, at the middle of the pool.

We can find the first meeting point in the same informal way. When
Al finishes his first lap (15 seconds), Bob has travelled (15)(1.5), that is,
22.5, and therefore the two are 7.5 metres apart. Now they are travelling
towards each other, and the gap between them is closing at 1 + 1.5 metres
per second. So it takes 3 seconds for them to meet after Al’s turn.

Another way : In the picture, the horizontal axis represents time, and the
vertical axis represents distance, as measured from the start of the race.
The heavy line represents Al’s space-time path, while the dashed heavy
line represents Bob’s. It is easy to draw these paths. Pick any convenient
time scale, and any convenient distance scale. Al reaches the far end at
time 15; his space-time position is then (15, 30). Draw the line segment
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Figure 1: Al and Bob

joining (0, 0) to (15, 30). In another 30 seconds Al is finished, at position
(45, 0). Draw the line segment joining (15, 30) to (0, 45). We now have
Al’s space-time path. Bob’s is drawn in a similar way.

The picture shows that the two space-time paths intersect twice. If we
have drawn the picture carefully we can measure where in space-time they
meet. Or else now that we have a purely geometric problem we can use
other ideas from geometry to do the calculation.
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