
UBC Workshop Solutions C

1. Let P = (5, 0), Q = (4, 4), and R = (0, 5). Find the area of 4PQR.

Solution. Almost anything works. For example, let O = (0, 0). Quadri-
lateral OPQR is split into two equal triangles by the line OQ. Triangle
OPQ has base OP of length 5, and height 4, so it has area 10. Triangle
ORQ also has area 10, so OPQR has area 20.
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Figure 1: The Area of 4PQR

But OPQR can be dissected into 4OPR, with area 25/2, and 4PQR. It
follows that 4PQR has area 20− 25/2, that is, 15/2.

Another way : Let M be the midpoint of PR. Then 4PQR can be viewed
as a triangle with base PR and height MQ. It is easy to verify that
OQ = 4

√
2 while OM = 5

√
2/2. Thus MQ = 3

√
2/2. Since PR = 5

√
2,

the area of 4PQR is (1/2)(3
√

2/2)(5
√

2), that is, 15/2.

Another way : Let M be the midpoint of PR. Then M has coordinates
(5/2, 5/2). The area of 4MPQ is equal to the area of 4OPQ, namely
(1/2)(5)(4), minus the area of triangle OPM , namely (1/2)(5)(5/2). Thus
4MPQ has area 15/4. Double this to find the area of 4PQR.

Another way: Instead of taking advantage of special symmetries in this
problem, we can use more general purpose tools. Drop a perpendicular
from Q to the x-axis, and let its foot land at X . Then X = (4, 0).
Trapezoid OXQR has area (1/2)(5 + 4)(4), namely 18, 4XPQ has area
2, and4OPR has area 25/2, and therefore4PQR has area 18+2−25/2.

The same idea can be used to show the following result. Let A = (x1, y1),
B = (x2, y2), and C = (x3, y3). Then the area of 4ABC is

1
2
|x1y2 − x2y1 + x2y3 − x3y2 + x3y1 − x1y3|.
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(This somewhat mysterious-looking formula makes more structural sense
from a vector point of view.)

Another way : Let 4ABC have sides of length a, b, and c, and let s =
(a + b + c)/2, so s is the semi-perimeter. Then by Heron’s Formula the
area of 4ABC is equal to√

s(s− a)(s− b)(s− c).

It is easy to see that the sides of 4PQR are
√

17,
√

17, and 5
√

2. Substi-
tuting directly into Heron’s Formula, we find that the area is√

(
√

17 + (5/2)
√

2)((5/2)
√

2)((5/2)
√

2)(
√

17− (5/2)
√

2).

This simplifies to 15/2.

2. A 10 metre by 16 metre pool is surrounded by a walkway of uniform width
whose area is 87 square metres. How wide is the walkway?

Solution. This should be routine, since it exercises algebraic skills that will
be needed in calculus courses. Sketch the pool and its walkway. Let the

Figure 2: Pool and Walkway

width of the walkway be w. The walkway consists of four w × w squares
(in the corners) with total area 4w2, and two w × 16 rectangles, and two
w × 10 rectangles. The combined area of the parts we have divided the
walkway into is 4w2+52w, so we arrive at the equation 4w2+52w−87 = 0.

Alternately, pool plus walkway form a (2w+10)×(2w+16) rectangle. Sub-
tract (10)(16) from its area to get the area of the walkway. We conclude
that

(2w + 10)(2w + 16)− (10)(16) = 87

and again arrive at 4w2 + 52w − 87 = 0. This quadratic equation can be
solved as usual by the quadratic formula, or by completing the square—
these are the “right” way to handle the problem. We should not expect
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factoring to yield an easy path to the solution. But the builders of the
walkway thoughtfully arranged for the quadratic to factor. We have

4w2 + 52w − 87 = (2w + 29)(2w − 3)

so the walkway has width 3/2.

3. A sports league has two conferences, East and West. Each conference has
10 teams. Every year, each team plays every team in its conference twice
and plays every team in the other conference once. What is the total
number of games played in the league during the year?

Solution. First look at the total number of games between teams of the
Western Conference. Since each team plays every team in its conference
twice, we can think of these two games as being “home” and “away.”

Call the teams of the Western Conference W1, W2, W3, . . . , W10. Looks
nice on a team sweater. Let’s count the number of home games between
Western Conference teams. Since any game is a home game for one of the
teams, we will have counted all games between Western Conference teams.
Each team, like W1, plays 9 home games against Western Conference
Teams. But there are 10 teams, so the number of games is 90.

By symmetry there are 90 games between Eastern Conference Teams.

Comment : Many students will know how many ways there are to “choose”
two teams from 10, so they will compute this number (45) and double. In
a sense this is not quite reasonable: it is really easier to count the games
if there are two between each pair of teams. If there is only one we can
divide by 2.

Now we need to count the number of inter-conference games. Team W1

plays 10 such games, as does W2, and so on down to W10, a total of 100
games. But this is all the inter-conference games.

Thus the total number of games is 90 + 90 + 100.

Suppose more generally that the Western Conference has m teams and
the Eastern Conference has n teams. The same argument shows that the
total number of games is

m(m− 1) + n(n− 1) + mn.

More generally suppose that any two teams in the Western Conference
play a games with each other, any two teams in the Eastern Conference
play b games with each other, and any two teams in different conferences
play c games. Then the total number of games is

am(m− 1)
2

+
bn(n− 1)

2
+ cmn.
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Another way : It is informative to view things more geometrically. To
count the number of games between Western Conference teams, draw a
10× 10 array with rows and columns labelled with the team names. The
two games between every pair of teams are represented by the 90 entries
in the array (100 minus the 10 “diagonal” entries). If there were only one
game for each pair of teams, the games could be represented for example
by the 45 entries in the triangle above the main diagonal.

Representing the inter-conference games is even simpler: label the rows of
a 10×10 array with the Western Conference team names, and the columns
by the Eastern Conference team names.

Another way : Here is an argument that is at once simpler and harder.
Look at a particular team, say W1. This team plays 2 games against each
of the 9 Western Conference teams (18 games) and 1 each against the
10 Eastern Conference teams, for a total of 28 games. Each team in the
league does the same thing, for a total of (28)(20). Well, not really. When
we multiplied 28 and 20, we were counting twice each game that team
W1 played, once from W1’s point of view and once from the other team’s
point of view. So the total number of games is (28)(20)/2. Note that this
approach uses the symmetry between the two conferences.

4. A paper drinking cup is cone-shaped. When there is water in the cup to
a depth of 4 inches, the cup contains 16 cubic inches of water. How many
cubic inches of water are in the cup when the water is 3 inches deep?

Solution. It is tempting to first reach for a formula, and then for a cal-
culator. If a cone has height h and ‘base’ radius x, then its volume V is
given by

V =
πx2h

3
.

It would be easy to compute the volume of water when the depth is 3 inches
if we knew the base radius r. We don’t know r, but we can compute the
base radius R when the depth of water is 4 inches.

When the water cone has height 4, our cup contains 16 cubic inches. It
follows that 16 = 4πR2/3, and therefore

R =

√
(16)(3)

4π
.

Comment : At this point many would reflexively reach out for the calcula-
tor and compute R to some number of decimal places. This is a very bad
habit. Our expression for R has structure. Pushing it through a calculator
turns a structured object into a jumble of digits.

The two water cones are similar. It follows that
r

R
=

3
4
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and therefore r = (3/4)
√

(16)(3)/(4π).

Now we can compute the volume of water, namely 3πr2/3. If we use the
value of r found above, we get quickly that the volume is (3)(3/4)2(16)/4
(the π’s cancel). Now, with calculator or without, we find that the volume
is 6.75 cubic inches.

Another way : There is a much better way of looking at the problem—
so much better that the solution we have just given should be called the
wrong solution.

The ‘small’ water cone is just a scaled down version of the big water cone.
The linear scaling factor is 3/4, that is, all lengths get multiplied by 3/4.
If we multiply the dimensions of an object by the linear scaling factor t,
then areas scale by the factor t2, and volumes scale by t3. So the volume
of our small water cone is (3/4)3(16).

5. Find all (real) values of k such that x2−2kx+k+1 = 0 has no real roots.

Solution. Complete the square. We have

x2 − 2kx+ k + 1 = (x − k)2 − k2 + k + 1,

so our original equation can be rewritten as

(x− k)2 = k2 − k − 1.

For any k, by suitably choosing x we can make (x− k)2 equal to any pre-
assigned non-negative quantity. So our original equation has no solution
if and only if k2 − k − 1 < 0.

Look at the curve with equation y = k2 − k − 1, where k is a variable.
This curve is an upward-facing parabola. So y is only negative between
the two roots of the equation k2 − k − 1 = 0. It follows that our original
equation has no real roots if and only if

1−
√

5
2

< k <
1 +
√

5
2

.

We can start in a slightly different way. All roots, real or not, of our
equation are given by the formula

x =
2k ±

√
(2k)2 − 4(k + 1)

2
= k ±

√
k2 − k − 1.

So there are no real roots if and only if k2 − k − 1 < 0. Now proceed as
before.

6. A 6 × 4 (base 6, height 4) rectangle is divided into twenty-four 1 × 1
squares by drawing 3 lines parallel to the base of the rectangle and 5 lines
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perpendicular to its base. How many different rectangles can be formed
using one or more of the 1× 1 squares?

Solution. Since the numbers aren’t large, we can probably manage the
count without much theory. Draw a picture like Figure 3. For now pay
no special attention to the two thicker lines. There are clearly 24 1 × 1
rectangles. Now count the 2× 1 (base 2, height 1) rectangles. By keeping
our eyes on the picture we can see that there are 5 in each row, for a total
of 20. In the same way we find that there are 12 3× 1 rectangles. We can
continue in this way and after a while reach the answer.

But all this is somewhat tedious; let’s count things in a more structured
way. It is natural to organize the count by rectangle size. Start with

Figure 3: Counting Rectangles

“large” ones—there are fewer of them. There is 1 6× 4 rectangle, 2 6× 3,
3 6× 2, and 4 6× 1. Continue by counting the 5× 4, the 5× 3, and so on.

We show how to figure out for example the number of 4 × 3 rectangles
(width four, height three). Start with a 4× 3 wedged into the Northeast
corner of the original rectangle, and see what freedom of movement it has:
0, 1, or 2 units to the West and/or 0 or 1 units South, for a total of 3 · 2
possibilities.

Another way of putting it is that a 4×3 is completely determined once we
specify its Southwest corner. And the Southwest corner of a 4×3 has to lie
in the Southwest rectangle determined by the two thick lines in Figure 3.
The picture shows that there are 3 · 2 choices for that Southwest corner.

This kind of reasoning shows that there is 1 6 × 4 rectangle, 2 6 × 3
rectangles, 3 6× 2, and 4 6× 1, for a total of 1 + 2 + 3 + 4.

Similarly, there are 2 · 1 5 × 4 rectangles, 2 · 2 5 × 3, 2 · 3 5 × 2, and 2 · 4
5 × 1, for a total of 2(1 + 2 + 3 + 4). Continue in this way. After a while
we get that the total number of rectangles is

(1 + 2 + 3 + 4) + 2(1 + 2 + 3 + 4) + 3(1 + 2 + 3 + 4) + · · ·+ 6(1 + 2 + 3 + 4).

This number can be rewritten as (1 + 2 + 3 + 4)(1 + 2 + 3 + 4 + 5 + 6). It
turns out to be 210.

The idea generalizes. If (including the sides of the rectangle) there are m
East–West lines and n North–South lines, the count proceeds in exactly
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the same way, with result

(1 + · · ·+ (m− 1)) (1 + · · ·+ (n− 1)) .

The above formula is easier to compute with if we use the fact that in
general 1 + 2 + · · ·+ k = k(k + 1)/2.

Another way : Instead of organizing the count by size, give it structure
by counting for each possible P the number of rectangles that have P
as Southwest corner. Start with P the Southwest corner of the whole
rectangle. Why start there? We have a coordinate system in mind, and
think of the Southwest corner as (0, 0).

To make a rectangle with Southwest corner (0, 0), we need to pick its
Northeast corner Q. A look at Figure 3 shows that there are 6 · 4 ways of
picking Q. Now move P one unit North. Why North? We are increasing
the y-coordinate by 1. There are then 6 ·3 rectangles with P as Southwest
corner. Go on like that, systematically. We get a total of 6(4 + 3 + 2 + 1)
rectangles whose Southwest corner is on the y-axis.

Now start with P = (1, 0). There are 5 · 4 rectangles that have P as
bottom left corner. Move to (1, 1), then (1, 2), and so on. We get a total
of 5(4 + 3 + 2 + 1) rectangles with Southwest corner on the line x = 1.
Continue.

Another way : We think the above approach is best, but there is a slicker
way. Suppose that when we include the sides of the rectangle there are m
East–West and n North–South lines. We produce a rectangle by choosing
two East–West lines and two North–South lines to form its boundary. The
East–West lines can be chosen in

(
m
2

)
ways. For each such way, the North–

South lines can be chosen in
(
n
2

)
ways. Thus there are

(
m
2

)(
n
2

)
rectangles.

When m = 5 and n = 7 there are 210 rectangles.

Comment : Most students will not be familiar with the notation
(
n

r

)
for

the number of ways of choosing r objects from n. But they will likely be
familiar with the notation nCr.

Another way : We can imagine choosing a rectangle by (i) first choosing one
of the 35 meeting points of our lines to serve as a corner of the rectangle—
call this point P—and then (ii) choosing one of the 24 meeting points Q
not on the same horizontal or vertical line as P to serve as a diagonally
opposite corner of the rectangle. This procedure produces each rectangle
ABCD four times: P = A, Q = C; P = C, Q = A; P = B, Q = D; and
P = D, Q = B. So the number of rectangles is (35)(24)/4. The same idea
works generally.

7. Solve for x: (x2 − 6x)(x2 − 6x+ 6) = 16.

7



Solution. A possibly fatal mistake is to multiply out: the given equation
has a nice structure, and multiplying out would destroy that structure.

Let u = x2 − 6x. Then our equation can be rewritten as

u(u+ 6) = 16 or equivalently u2 + 6u− 16 = 0.

The last equation may be rewritten as (u + 8)(u − 2) = 0, and has the
solutions u = −8 and u = 2.

So x is a solution of our original equation if and only if

x2 − 6x = −8 or x2 − 6x = 2.

The first equation can be rewritten as x2 − 6x + 8 = 0; its roots are 2
and 4. The second equation can be rewritten as x2 − 6x− 2 = 0. By the
quadratic formula, its roots are given by

x =
6±
√

44
2

= 3±
√

11.

It would have been better to let u = x2− 6x+ 3, halfway between x2− 6x
and x2 − 6x + 6. This symmetrizing move simplifes things a bit. For
then x2 − 6x = u − 3 and x2 − 6x + 6 = u + 3, so our equation becomes
(u − 3)(u + 3) = 16, or equivalently u2 = 25. Thus we have u = ±5, and
we go on as before.

Another way: We can make the equation look nicer by completing the
square in x2 − 6x and x2 − 6x+ 6. Note that

x2 − 6x = x2 − 6x+ 9− 9 = (x− 3)2 − 9.

Let y = x − 3. Then x2 − 6x = y2 − 9 and x2 − 6x + 6 = y2 − 3, so our
equation becomes

(y2 − 9)(y2 − 3) = 16,

which expands to y4 − 12y2 + 11 = 0, a quadratic equation in y2. By
inspection, or by the quadratic formula, we find that y2 = 1 or y2 = 11
Thus y = ±1 or y = ±

√
11. Add 3 to get x.

8. Al and Bob are having a two lap race in a 30 metre pool. Al swims the
first lap freestyle at 2 metres per second. For the second lap he swims the
backstroke at 1 m/s. Bob swims the butterfly at 1.5 m/s for the entire
race. At what time(s) after the start will Al and Bob be side by side? (Al
and Bob are very small—in fact they are points.)

Solution. Bob swims 60 metres at 1.5 metres per second, so he takes 60/1.5
seconds, that is, 40 seconds. Al takes 30/2 seconds for the first lap and
30/1 for the second, for a total of 45. Al loses.
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But it is clear that Al finishes the first lap well ahead of Bob. So Bob and
Al must meet once while Al is already on his second lap and Bob is still
on his first. And they must meet again before the end of the race, since
Bob will win.

“Algebra” gives us a fairly mechanical way of finding when they meet.
But the algebra must be guided by a geometric view of the race.

Let’s suppose Al and Bob first meet after t seconds. We have seen that
Al is already on his second lap, so t > 15. Al has travelled a length of the
pool, plus (1)(t− 15). And Bob has travelled a distance 1.5t. We have

(1)(t− 15) + 1.5t = 30,

and therefore 2.5t = 45, so t = 18. Thus Al is already 3 seconds (metres)
into his return trip; Al and Bob first meet 3 metres from the far end of
the pool.

For the second time that they meet, again let it be after t seconds. Then
Al has travelled a distance 30+(t−15). And Bob has travelled 1.5t. These
distance are equal, so 30 + (t − 15) = 1.5t. This simplifies to 15 = 0.5t,
giving t = 30. That’s 15 seconds (metres) into Al’s second lap, so Al and
Bob meet for the second time at the midpoint of the pool.

Once we know that they first meet 3 metres from the far end, we can solve
the problem without further algebra. For Bob needs to travel 2 seconds
to complete his first lap. In that time Al has travelled 2 metres, so is 5
metres ahead. Bob now gains half a metre a second, so needs 10 seconds
to catch Al. That puts him midway in the pool..

Another way: There is no need at all of formal algebra—some thinking
is enough. Let’s work backwards from the end. Bob took 40 seconds, Al
took 45. So Bob won by 5 seconds, and at that time Al was 5 metres from
finishing. Now run the movie backwards, so Al is swimming backwards at
1 metre per second, Bob at 1.5 metres per second, and Al has a 5 metre
“lead.” Bob gains half a metre a second, so in 10 seconds has caught up.
That’s 15 metres from the end, at the middle of the pool.

We can find the first meeting point in the same informal way. When
Al finishes his first lap (15 seconds), Bob has travelled (15)(1.5), that is,
22.5, and therefore the two are 7.5 metres apart. Now they are travelling
towards each other, and the gap between them is closing at 1 + 1.5 metres
per second. So it takes 3 seconds for them to meet after Al’s turn.

Another way : In the picture, the horizontal axis represents time, and the
vertical axis represents distance, as measured from the start of the race.
The heavy line represents Al’s space-time path, while the dashed heavy
line represents Bob’s. It is easy to draw these paths. Pick any convenient
time scale, and any convenient distance scale. Al reaches the far end at
time 15; his space-time position is then (15, 30). Draw the line segment
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Figure 4: Al and Bob

joining (0, 0) to (15, 30). In another 30 seconds Al is finished, at position
(45, 0). Draw the line segment joining (15, 30) to (0, 45). We now have
Al’s space-time path. Bob’s is drawn in a similar way.

The picture shows that the two space-time paths intersect twice. If we
have drawn the picture carefully we can measure where in space-time they
meet. Or else now that we have a purely geometric problem we can use
other ideas from geometry to do the calculation.

9. The bisector of one of the acute angles of a right-angled triangle divides
the opposite side into segments of length 7 and 25. Find the area of the
triangle.

Solution. Please see Figure 5. Everything would be easy if we knew the
length of AB. This we try to find. Draw the perpendicular from C to the

7 25

A

B C

D

E

Figure 5: The Angle Bisector

line AE, meeting that line at D.

It is clear by symmetry that 4ABC is congruent to 4ADC: the two
angles at A match, so all angles match, and line AC is common.
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It follows that CD has length 7. But then (Pythagorean Theorem)DE2 =
252−72, and after a bit of calculation we find DE = 24. So the angle at E
has tangent equal to 7/24. But it also has tangent equal to AB/(7 + 25).
We conclude that AB = 7(32/24). Finally, multiply AB by 32, divide by
2. If we simplify we get something like 448/3.

Another way : We don’t really need to know AB. Triangle CDE has area
84. But4ABE is a scaled-up version of4CDE, with linear scaling factor
32/24, that is, 4/3. So areas scale by (4/3)2, and after some simplification
we get 448/3.

10. Find all pairs (x, y) of positive integers such that xy = 4x+ 5y + 6.

Solution. Rewrite the equation as xy − 4x− 5y = 6. We use an analogue
of the familiar process of completing the square. Note that xy − 4x− 5y
is ‘almost’ (x− 5)(y − 4). More precisely

xy − 4x− 5y = (x− 5)(y − 4)− 20,

so the original equation can be rewritten as

(x− 5)(y − 4) = 26.

We are looking for solutions (x, y) in positive integers. Let u = x− 5 and
v = y − 4. Then u and v need to be integers with uv = 26. There aren’t
many possibilities.

Maybe u = 1, v = 26. That gives x = 6, y = 30.

Maybe u = 26, v = 1. That gives x = 31, y = 5.

Maybe u = 2, v = 13. That gives x = 7, y = 17.

Maybe u = 13, v = 2. That gives x = 18, v = 6.

One can also imagine u and v negative. But then in all cases one of x or
y is negative.

Another way : Rewrite the equation as xy − 5y = 4x + 6. We can’t have
x = 5. For if x = 5 then the left side is 0 and the right side is not. So our
equation is equivalent to

y =
4x+ 6
x− 5

.

The nature of the right side becomes clearer if we divide 4x+6 by x−5, us-
ing ordinary division of polynomials. The quotient is 4 and the remainder
is 26, so our equation is equivalent to

y = 4 +
26
x− 5

.

Since x and y are integers, it follows that x − 5 must be a factor of 26.
Look first at the positive factors. Set x − 5 in turn equal to 1, 26, 2, or
13. Each choice gives a positive integer value for y.
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We also need to examine negative factors of 26. The possibilities are
x − 5 = −13, −26, −1, and −2. The first two give negative values of x
and the last two give negative values of y.

Another way : We can do a cruder investigation based on size estimates.
The intuition behind it is that if x and y are both big, then xy is bigger
than 4x+ 5y+ 6. So if our equation holds, the smaller of x and y can’t be
large. Then we do a crude search through small x and y. Bounds followed
by a search are a useful tool, particularly if we can make a computer do
the searching.

Suppose first that x ≤ y. Then 4x+5y+6 ≤ 9y+6. So if xy = 4x+5y+6
then xy ≤ 9y+ 6. This forces x < 10. Similarly, if y ≤ x then y < 10. We
conclude that min(x, y) < 10.

The above observations limit the hunt, and we can limit it further. From
xy = 4x + 5y + 6 we conclude that x > 5 (else the left side would be
too small) and y > 4 (same reason). Thus we need only explore the
possibilities 6 ≤ x ≤ 9, (with no conditions yet on y) and 5 ≤ y ≤ 9 (with
no conditions yet on x.)

Put x = 6. Our equation becomes 6y = 5y + 30, so y = 30. Next put
x = 7. Our equation becomes 7y = 34 + 5y, so y = 17. Put x = 8. We
get 8y = 38 + 5y, which has no integer solution. A similar problem arises
with x = 9. Now deal in the same way with y = 5, 6, . . . , 9. We quickly
find the other two solutions.

11. A cat owns 4 identical socks and 4 identical boots. In how many orders
can it put on socks and boots in the morning? There is no such thing as a
left cat boot or a right cat boot. And a sock must go on a paw before—but
not necessarily immediately before—a boot is put on that paw.

Solution. We can make a reasonably well-organized list. But some short-
cuts are necessary, since it will turn out that the number of ways is 2520.
Here is one way of doing the listing.

There are 8 actions that the cat will take, one after the other, say at times
1, 2, 3, 4, 5, 6, 7, and 8. At time 1, the cat must put a sock on one of its
paws. There are 4 choices for which paw is the first to get socked. And
for every one of these choices, there remain 7 times for when that paw will
get booted, for a total of 4 · 7 ways.

For each of the 4 · 7 possibilities described above, there are 3 choices for
which is the second paw to get socked. And for each such choice, there
are 5 possible times when that second paw get booted. So up to now we
have (4 · 7)(3 · 5) choices. For each of these choices, there are 2 choices for
which is the third paw to get socked. And for each such choice, there are
3 times when that third paw gets booted. Now everything is determined,
so the number of ways for the cat to be well-shod is (4 ·7)(3 ·5)(2 ·3), that
is, 2520.
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Another way : Label the cat’s feet 1, 2, 3, and 4. The actions of the cat
can be captured as an 8-digit number made up of two occurrences each of
the digits 1, 2, 3, and 4. So for example the number 21234413 means that
the cat first put a sock on paw 2, then a sock on paw 1, then a boot on
paw 2, then a sock on 3, then a sock on 4, then a boot on 4, a boot on
1, and a boot on 3. In each case, the first occurrence of a digit refers to
putting on the sock, and the second refers to putting on the boot.

We must choose two places for the 1’s to go. This can be done in
(

8
2

)
ways.

For each such choice, there are
(

6
2

)
ways of placing the 2’s. So the first

two tasks can be done in
(

8
2

)(
6
2

)
ways. And for each of these ways the 3’s

can be placed in
(

4
2

)
ways. Once the 3’s have been placed, there is only

one way of placing the 4’s. To make things look nice let’s call this
(

2
2

)
. So

the total number of ways of putting on socks and boots is(
8
2

)(
6
2

)(
4
2

)(
2
2

)
.

(Students will be more familiar with the notation nCr for the binomial
coefficients.) Compute. We get (8 · 7)(6 · 5)(4 · 3)(2 · 1)/24.

Another way : This is not really different. Represent the actions of the
cat by a sequence of the 8 different symbols s1, s2, s3, s4, b1, b2, b3, b4.
For example s2s1b2s3s4b4b1b3 means that a sock was put on paw 2, then
a sock on paw 2, then a boot on paw 2, and so on. We must count the
number of sequences in which for any i, si comes before bi.

There is a total of 8! sequences. By symmetry, in half of these s1 comes
before b1, and in half it comes after. So there are 8!/2 sequences in which
s1 comes before b1. Among these sequences, half have s2 coming before b2,
and half after. So there are 8!/22 sequences in which s1 comes before b1
and s2 comes before b2. And in half these sequences, s3 comes before b3.
Go on in this way. We conclude that there are 8!/24 permissible patterns.

The arguments used for ordinary cats work equally well for n-footed cats.
The number of ways turns out to be (2n)!/2n.

12. (i) Find integers a and b such that 0 < a− b
√

2 < 0.6. (ii) Find integers a
and b such that 0 < a− b

√
2 < 0.36. (iii) Find integers a and b such that

0 < a− b
√

2 < 0.01.

Solution. (i) We can find
√

2 approximately without a calculator by an
informal approximation procedure: 142 = 196 and 152 = 225, so

√
2 is

between 1.4 and 1.5, and (probably) closer to 1.4. It should not be hard
to see that 0 < 2 −

√
2 < 0.6. So we can choose a = 2 and b = 1. There

are infinitely many other answers.

(ii) One can in fact easily beat 0.36. For example we might note that 2
√

2
lies between 2.8 and 3, so if a = 3 and b = 2 we have 0 < a− b

√
2 < 0.2.
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The 0.36 in the question is meant to encourage squaring. We have

0 < 2−
√

2 < 0.6 and therefore 0 < (2−
√

2)2 < 0.36.

Expand (2−
√

2)2. We get 6− 4
√

2. So we can pick a = 6 and b = 4. But
immediately we notice that we can do better and more cheaply. Divide
by 2 and we get 0 < 3− 2

√
2 < 0.18.

(iii) We can for example square both sides of the inequality

0 < 3− 2
√

2 < 0.18.

(With a calculator, we could note that in fact 3− 2
√

2 < 0.172, but this
sort of improvement is not of great value.)

Since (3− 2
√

2)2 = 17− 12
√

2, we conclude that 17− 12
√

2 < .04, in fact
17 − 12

√
2 < .03. Square again. We get that 577− 408

√
2 is sufficiently

small. In fact (calculator) it is about 9× 10−4.

13. Let P be the point with coordinates (4, 6) andQ the point with coordinates
(0, 3). Find the coordinates of the point(s) R on the x-axis such that
4PQR has area 20.

Solution. A picture like Figure 6 is more or less essential. Think of our

P

Q

RM
O

S

Figure 6: Making a Triangle with Area 20

triangle as having base PQ. A quick computation shows that

PQ =
√

(4− 0)2 + (6− 3)2 = 5.

Pleasant. Since the area of a triangle is half of base times height, we want
our triangle to have height 8.

We are therefore looking for a point on the x-axis which is at distance 8
from the line through P and Q. A look at the picture shows that for any
d > 0, there are two points on the x-axis which are at distance d from the
line PQ. One of them is a certain distance to the right of the point we
have marked M , and the other is the same distance to the left of M .
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This is clear by symmetry: if we continue the line PQ to the left of M ,
we get a mirror image of what happens to the right of M .

Imagine that R is the point to the right of M that does the job, and draw
a perpendicular from R to PQ, meeting PQ say at S. Then RS = 8.

The line PQ has slope 3/4. Since OQ = 3, we have OM = 4, and therefore
MQ = 5.

But triangles OQM and RSM are similar, RS/MR = OQ/MQ = 3/5.
But RS = 8, so MR = 40/3. It follows that OQ = 40/3− 4 = 28/3, and
this gives the x-coordinate of R as drawn. But there is another point on
the other side of M that does the job, say R′. Then MR′ = MR, so the
x-coordinate of R′ is −4− 40/3, or −52/3.
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