
UBC Grade 11/12 Solutions 2000

1. Let the edge lengths be a, b, and c. We know their products in pairs.
With suitable labelling bc = 720, ca = 1000, ab = 1250. Multiply. We
get (abc)2 = (720)(1000)(1250), and therefore abc = 30000.
We could instead use elimination to find say a (then b and c are immedi-
ate.) The first calculation exploited the fact that volume is symmetric
in a, b, and c.

2. The first equation can be rewritten as (x−y)(x+y) = 0, so it represents
a “curve” made up of the familiar lines y = x and y = −x. The second
equation is the equation of the circle with center (k, 0) and radius 1.
Because of symmetry, we can look first at the case k ≥ 0, and then
reflect across the y-axis. A glance at a picture shows that there are 4
solutions if k = 0. Increase k. When the circle passes through the origin
(k = 1) the number of solutions drops to 3. Then it jumps immediately
back to four. It stays at four until the circle becomes tangent to y = x,
when the number of solutions drops to 2. That happens when k =

√
2.

And after that there are no solutions. So there are no solutions when
|k| >

√
2, two solutions when |k| =

√
2, four when 1 < |k| <

√
2, three

when |k| = 1, and four when |k| < 1.
The problem can also be handled algebraically. Eliminate y2. We
obtain the equation 2x2 − 2xk + k2 − 1 = 0. There are no roots when
the discriminant 8−4k2 is negative, that is, when |k| >

√
2. When the

discriminant is 0, there is one root, so two solutions. Below that, there
are two roots, and hence four solutions, except in the case when one of
the roots is 0, when there are only three solutions.

3. Look at the “middle” square of the tromino, and colour the inner vertex
of this square red. This red dot must go to one of the 49 points where
inner lines of the chessboard meet. And for each such point, the tromino
can be placed in 4 ways. So there are 4 × 49 ways.
Or we can think about the orientation of the tromino: it can be like an
‘L’, like an upside-down ‘L’, and so on, four possibilities in all. If it is



like ‘L’, the vertical part can be in any of 7 columns, and for each such
column the tromino can be put in 7 different places, for a total of 49.
We get identical counts for the other 3 possibilities, for a total of 196.
Or we can be less efficient, and examine where the inner square S of the
tromino goes. For each of the 4 corner squares of the chessboard, there
is only one way of placing S. For each of the 24 remaining edge squares,
there are two ways of placing the tromino so S is on that square. And
for each of the remaining 36 squares of the chessboard, there are 4 ways
of placing S. So there are 4 + 48 + 144 ways.
If we are in a topological mood, we can make the board into a torus,
overlapping the north and south rows of squares, also the east and west
rows. This yields another argument that the answer is 4 × 72.
For an m× n chessboard, we can in the same way show that there are
4(m − 1)(n − 1) ways of placing the tromino.

4. We could use “algebra” but careful reasoning should get us through.
Janet got to the top 12 minutes before Fred, so she got halfway 6
minutes before Fred. That is, Fred got to the halfway point 6 minutes
after Janet passed Alicia. In the remaining 10 minutes until he caught
Alicia, he covered as much territory as she had in 16 minutes. When
Fred caught up to Alicia, she had been hiking for 30 minutes longer
than Fred. Every 16 minutes, she “loses” 6 minutes, so when they met
she had travelled 80 minutes (and Fred had travelled 50). Thus Alicia
had reached the halfway point in 80 − 16 minutes, and therefore took
128 minutes in all. She got to the top at 6:38.
How might the algebra go, if we proceed more or less mechanically?
Let A, F , and J be the time, in minutes, that our hikers took. Then
F = J+12. Since Janet caught Alicia at the midpoint, A/2 = J/2+30.
Sixteen minutes later, the fraction of the Grind Alicia had covered is
(A/2 + 16)/A. Fred had travelled for time A/2 + 16 − 30, and hence

(A/2 + 16)/A = (A/2 − 14)/F.

From the first two equations F = A − 48. If we substitute into the
third equation, we find that A = 128.

5. By symmetry, it doesn’t matter where P is. So let it be on top of the
circle of radius 2. The line PQ crosses the small circle precisely if Q
lies between the points labelled A and B.



Figure 1: Two Circles

The probability of this is the ratio of 6 AOB to a full rotation. There
are various ways of finding the size of 6 AOB. Perhaps recall that (by
a general result) this is twice 6 APB. But 6 APO is easy to find, for it
has sine equal to r/R where r and R are the radii of the two circles.
For our particular numbers, we conclude that 6 APO is a 30◦ angle, so
6 AOB is a 120◦ angle, and the probability is 1/3.

6. Please see the diagram below. The diagonal AC is a perpendicular
bisector of the fold line. Let θ = 6 CAB, let d be the length of the
diagonal, and f the length of the fold line. Then (f/2)/(d/2) = tan θ, so
f = d tan θ. By the Pythagorean Theorem, d = 26. And tan θ = 10/24.
The fold line has length 260/24. If we wish we can avoid mention of
tan θ and use the language of similar triangles.

Figure 2: Folding a Rectangle



7. The region consists of three squares, of combined area 338, and four
triangles. Since 52 + 122 = 132, the inside triangle T is right-angled.
So it has area 30. Observe that the other three triangles also have area
30. This is trivially true for one of them. So now look for example
at the northwest triangle in the picture. Rotate it clockwise through
90◦ about its lower right-hand corner. This shows that it has the same
base and height as T , so the same area.
Or else we could find areas as (xy sin θ)/2, and get our conclusion from
the fact that complementary angles have the same sine. Now add up.
We get 458.

8. There are other trigonometric identities that are mentioned sometime
in grade 12 and that students might look for analogues of. Part (c) re-
quires logarithms, which are often not done until fairly late in grade 12.
(a) We can square x and y, then subtract. It is easier to note that
x2 − y2 = (x + y)(x− y) = ata−t = 1.
(b) We get

sinha(t) = (a2t − a−2t)/2 = (at + a−t)(at − a−t)/2 = 2 cosha(t) sinha(t).

(c) Let u = 10t. The equation can be rewritten as (u + 1/u)/2 = 20,
that is, u2 − 40u + 1 = 0. Solve as usual: u = 20 ±

√
399. It follows

that t = log(20 ±
√

399). For people who like decimals, the results are
roughly ±1.6017883.

9. Join the top and bottom of the kite. We have divided the kite into two
equal triangles. We will decide on the best angle between “a” and “b.”
Think of the triangle as having base b. Then the larger the “height,”
the larger the area. It is clear that we reach greatest height by having
the stick of length a perpendicular to the base. The maximum possible
area of the kite is ab.

10. (a) It is probably best to start by saying that we use 5 $2 coins, or
4, or 3, or 2, or 1, or 0. If we use 5 $2 coins, the game is over, so
that gives 1 way of making change. If we use 4 $2 coins, we need to
produce 2 dollars with loonies and quarters. That can be done in 3
ways (2 loonies, or 1, or 0.) If we use 3 $2 coins, the remaining $4 can
be done in 5 ways, and so on. So the number of ways of making change



is 1 + 3 + 5 + 7 + 9 + 11, that is, 36.
(b) This is handled in the same way. For the number of ways of chang-
ing a $20, we end up having to find 1 + 3 + 5 + · · ·+ 19 + 21, which is
121. For the number of ways of changing a $50, we are looking at the
sum 1+3+ · · ·+49+51. For this it may be worthwhile to use develop
some machinery. We get (26)2.
There are more geometrical ways of proceeding. For example, the sum
1 + 3 + · · · + 11 can be seen to be 62 from the dot pattern below. In

Figure 3: Making Change

general, suppose that we are trying to make change for a 2k-dollar bill.
Represent the use of x two-dollar coins and y one-dollar coins (which
determines the number of quarters) by the point (x, y). We want to
count the number of pairs (x, y) such that 2x + y ≤ 2k. These are the
points with integer coordinates in a certain triangle. One can count
them directly, or work instead with a rectangle.

11. Let the legs be a and b. Then a2 + b2 = 225 amd ab = 32. So
a2 + 2ab + b2 = 289, and a + b = 17. The perimeter is 32. There are
harder (and less symmetrical) ways to solve the problem.

12. The triangle that sticks out is similar to 4ABC. Because it has area
equal to 0.64 times the area of 4ABC, its sides are 0.8 times the sides
of 4ABC. Unfold, and label things as in the diagram below. The line
PQ is equidistant from RS and BC. It follows that 4APQ has 0.9
times the linear dimensions of 4ABC, and so in particular the fold
PQ has length 21.6. There are more complicated ways to solve the
problem.

13. We could calculate. There is a lot of symmetry, and we can take the
vertices to be P = (0, 1), (

√
3/2,±1/2), (1/2,±

√
3/2), and so on, so

the calculation is not even very long. But one can prove a stronger



Figure 4: The Folded Triangle

result in an easier way.
Let P be any point on the circle. We will work with a regular 2n-sided
polygon. Then the vertices can be divided into diametrically opposite
pairs. Take any such pair A, B. Then 6 APB is a right angle. So
by the Pythagorean Theorem (PA)2 + (PB)2 = (AB)2 = 4r2. (The
argument is not quite right, P could be one of A or B, but then again
(PA)2 + (PB)2 = 4r2.) So we get a contribution of 4r2 from each of
the n pairs, for a total of 4nr2. For the 12-gon the sum is 24r2.

14. The general term has shape 9 + 23n where n is a non-negative integer.
We want 9+23n to be a perfect square, say 9+23n = x2, or equivalently
(x − 3)(x + 3) = 23n. Since 23 is prime, it must divide one of x − 3
or x + 3. The cheapest way to achieve this with x > 3 is to make
x + 3 = 23. The next cheapest is to make x − 3 = 23. And the next
cheapest after that is to make x + 3 = 46. So the perfect squares are
202, 262, and 432.

15. Look at the entire region R covered by the diagram. We can think of
R as the semicircle on “4”, plus the semicircle on “3,” plus the triangle.
We can also think of R as the semicircle on “5” plus the shaded region.
But the two small semicircles have combined area equal to that of the



big semicircle. This can be done by direct computation, but it is also a
consequence of a natural generalization of the Pythagorean Theorem.
It follows (by cancellation) that the shaded region has the same area
as the triangle, namely 6.
Comment. Hippocrates of Chios (around −450) did essentially the
same thing with the right-angled triangle with equal legs, concluding
that each “lune” has area 1/4. Thus a natural region with curvy sides
can have a nice area. There is reason to think that Hippocrates was
interested in the problem of “squaring the circle” with compass and
straightedge.

16. There are 125 such numbers, so adding them up is unappealing. Imag-
ine listing all the numbers and adding. There are 25 numbers with
last digit 1, 25 with last digit 3, and so on. So the sum of the last
digits is 25(1 + 3 + . . . + 9), that is, 625. Similarly, sum of the “tens”
digits is 625, as is the sum of the “hundreds” digits. So the sum is
625 + 625(10) + 625(100), that is, 69375.

17. The given curve has an oval shape. Imagine drawing circles with center
the origin and radius r, starting with small r and letting r increase. As
r grows, after a while the circle fails to meet the curve. The last r for
which it does meet the curve represents the largest distance a point on
the curve can be from the origin. If we substitute r2 − y2 for x2 in the
equation of the curve, we obtain

17y4 − 2r2y2 + r4 − 16 = 0.

This has a (real) solution as long as the discriminant 64(17 − r4) is
non-negative. So the largest solution is reached when r = 171/4.
Comment. Consider the curve xa +2aya = 2a for various values of a. It
turns out that if a ≤ 2, then the largest distance from the origin is 2,
but that if a > 2 the largest distance is greater than 2. The “intuitively
obvious” fact that in the ellipse x2 + 4y2 = 4 the point furthest from
the origin is at a distance 2 from the origin is therefore perhaps not so
obvious.

18. If we try to use the calculator in a brute force way, we run out of digits.
We will use a trick, well, not really a trick, more like a Method. Let

N = (100 +
√

10001)3 + (100 −
√

10001)3.



It turns out that N is an integer. This can be done for example by
thinking about expanding each of the cubes, and noticing that the
terms that involve

√
10001 cancel.

We rewrite things as

(100 +
√

10001)3 = N + (
√

10001 − 100)3.

Thus the quantity that we want to calculate is an integer plus (
√

10001−
100)3. The calculator will now work. The first two non-zero digits are
12.

19. In order for N to be such an integer, we need to have

a + 0.321 ≤
√

N < a + 0.322

for some integer a. Equivalently, we want

a2 + (0.642)a + (0.321)2 ≤ N < a2 + (0.644)a + (0.322)2.

This is pretty easy to arrange: we need to make sure that there is an in-
teger between the lower bound and the upper bound. That will already
be true if we pick a = 500. Then the left bound is about 250321.1, the
right bound is about 250322.1, so we can take N = 250124.
A closely related way of looking at things is to note that the difference√

n + 1−√
n between consecutive squares is equal to 1/(

√
n + 1+

√
n).

By the time we reach 250000, such differences are (barely) less than
0.001. At 250000 (and therefore 250001) the first three digits after the
decimal point are 000. At 251000, they are 999. So we go in order from
.000 to .999.
We can get away much more cheaply. We can do a brute force seach,
which (for the first three digits after the decimal point) should be fea-
sible with almost any programmable calculator. Or we can use more
sophisticated tools, such as continued fractions, to find suitable a. It
turns out that the smallest N that works is 2054.


