UBC Grade 11/12 Solutions 1993

1. Let P be the profit in cents, ¢ be the cost at which the tapes will be
sold (in cents) and n be the projected number of tapes that will be
sold. We are told that n = 1000+ 50(100 — ¢) = 6000 — 50c. The profit
is en — 60n = n(c — 60), so we have a parabola,

P = (c—60)(6000— 50c)
= —50(c® — 180c + 8100) — 360000 + 405000
= —50(c — 90) + 45000

The parabola, which opens downward, has vertex (90,45000), so the
most profitable cost setting would be 90 cents.

2. (a) f(1) =1,9(1) = 4,50 f(1)/g(1) = §
(b) g(1) =4, f(4) = 127
(c) Isolate y, and then interchange x and y.

y=2x%—1
y+1:2x3
sy +1

2
Interchanging = and y, we finally arrive at
y+1

) =y S

3. First note that 1 to any power is 1. Thus, 1 is a solution. Now,
T 2 . . . .
suppose = # 1. @) = 2% then implies 2* = 22 which in turn means
that x = 2. Thus, z =1, 2.

4. Assume that the hands move continuously, as opposed to discretely.
The minute hand travels at a rate of 360 degrees over 60 minutes, or 6
degrees per minute. The hour hand moves at a rate of 360 degrees over



720 minutes (12 hours, not 24), or half a degree per minute. At 4:00,
the minute hand points to 12 (0 degrees), while the hour hand points
to 4 (120 degrees). Thus, letting ¢ be the time in minutes after 4:00,
an equation is

6t =120 + 0.5t = ¢ = 210

At about 4:21.82, the minute hand overtakes the hour hand.

. We are interested in finding the critical values of m for which the two
graphs have only 1 intersection (the point of tangency).

Figure 1: Ellipse and Lines

Substitute the equation of the line into the one for the ellipse. We
2 249 2

have f—6 + 2 + xgm—l—m = 1, which, simplified, is 2522 + 32maz +

16m? — 144 = 0. Using the quadratic formula, we can solve for z. © =

—32m=+/(32m)2—100(16m2 — 144 L )
V( )50 ( ). The discriminant determines the number of

intersections. Expand the discriminant: 1024m? — 1600m? + 14400 =
—576m? + 14400 = (120 +24m) (120 — 24m) = 24%(5+m)(5—m). The




critical value of |m| is therefore 5.

If |m| = 5, we have a zero discriminant, and one intersection point.

If |m| > 5, we have a negative discriminant, and no intersection points.
If |m| < 5, we have a positive discriminant, and thus two intersection
points.

6. For v < 2, we have y = 20+ 2 — o = 2 4+ z, and for x > 2, we have
y=2r+x—2=3r—2. A point of interest is (z,y) = (2,4); this is the

2
“joint”. Thus, fory < 4, x = y—2, and for y > 4, we have x = %
y=2%H2- x|
b
41

i

Figure 2: y = 2z + |2 — z

7. We can rearrange the given equation in at least two useful ways.
a>+ 0%+ c® =bc+ca+ab = (a* — ab) + (b* — bc) + (¢* — ca) =0
This in turn implies Equation « : a(a — b) + b(b —¢) + ¢(c —a) =0
But, a? + b* + ¢ = bc+ ca+ ab = (b* — ba) + (¢* — ¢b) + (a* — ac) =0
This implies Equation 5 : —b(a —b) —c(b—c¢) —a(c—a) =0
Add Equations «, 3.
a(a—b) —bla—b)+bb—c)—c(b—c)+c(c—a)—alc—a)
=(a—02*+b—0c) +(c—a)*=0



Thus, we have a sum of squares adding to zero; the only way this can
happen is if all the squares are zero. Therefore, a = b = ¢, and the
triangle is equilateral.

. Let’s look at a generic parenthesized group of fractions. Each paren-
thesized group is of the form

L2 k142t tk Kkt 1)k
F+1 0 k+1

T k+1 T k1 T 2(k+1) 2

which is a result known from arithmetic series. Now, notice that we are
summing groups with £ = 1..99, so that we may now write the original

sum as
LGN R | 99 x 100

—=—-(142+---499) = ——— = 2475
,; 2 2( F240 499 2x2
. We can solve this problem by listing all possible orderings of letters,
and counting the ones that have no letters in the right place. We will
number our letters 1, 2, 3, and 4, and an ordering of these letters we
will display as a string of numbers, like 3241.

1234 1243 1324 1342 1423 1432
2134 2143 2314 2341 2413 2431
3124 3142 3214 3241 3412 3421
4123 4132 4213 4231 4312 4321

The orderings that have no numbers in the correct place are in bold.
There are 9 such orderings.

The astute reader will realise that solving this type of problem by
enumeration would be quite difficult if we added just one letter to the
problem, as there are 5! = 120 orderings of 5 letters. There is a general
formula to solve this problem for any integer n, it is

)

A derivation of this formula uses the principle of “inclusion-exclusion,”
which is explained in various mathematical textbooks and websites.
(e.g.
http://forum.swarthmore.edu/dr.math/problems/jarrad03.27.99.html
http://wuw.unc.edu/ "rowlett/Math148/notes/incl_exclude.html

— Links last visited 2000 August 03)




10.

11.

12.

Let Q(x) be the quotient upon dividing z'% by 2? + 3z + 2. Then,
notice that the roots of z? + 3x + 2 are —1 and —2. We can write
2'% = f(z) = (#* + 3z + 2)Q(z) + P(x). Since the degree of P(x) is
no more than 1, let P(x) = Az + B. We are now in a position to find
the constant term of P(x) by substituting the roots of the divisor into
f(a).

f(=1)=1=0xQ(zx)—A+ B

f(=2)=2"0=0xQ(zr) —2A+ B

Thus, A = B — 1= (B — 2. Solving, we find that B, the constant

2
term of P(x), is equal to 2 — 2109,

Draw a line parallel to AB through the point L.

A

J L

Figure 3: Geometry for Question 11

/ABC = /LJM from the parallel lines theorem
/JLM = /BKM from the parallel lines theorem

ABKM ~ AJLM because of two equal angles (implying 3)

KB
—— =2 because KL = LM, so the triangles are in a 2:1 ratio

JL
/ABC = /ACB = /LJC. We are given that AABC is isosceles
AJLC is isosceles. Therefore, JL = LC

From —— = 2, we can now substitute to get — =
gL oV W 8V To

Connecting the centres of the circles, we see that we have an equilateral

triangle. Thus, the band spans 360 — 180 — 60 = 120° of each of the
three circles; this is equivalent to the circumference of one of them,

2.



2nr = 27 m. It is also clear that there are three “straight” strips of
length 2 radii = 2m each, for another 6 m of length. The total length
is (6 + 27) m.

Figure 4: A Bundle of Pipes

13. Recall that the equation of a line in two dimensions can be found
provided we have two distinct points. We can do this using the form

(y—wy)+alz —z1)=0

The case of a plane in three dimensions is analogous. Let our 3-D
origin be located at the point 7. Let the z-axis point along TU, the
y-axis point along TW, and the z-axis point along T'P. Let also the
side length of the cube be 2. Then, we have three distinct points that
lie on a unique plane, namely (0,0,2),(1,1,0),(2,1,1). We can create
three equations:

Alx—0)+By—0)+(z—2) = 0
Alx—=1)+By—0)+ =2
Alx—=2)+Bly—1)+(z—1) = 0

I
o

Keeping the Az, By,z on the left side, we see that 2 = A+ B =

2A + B + 1, which can be solved easily. A = —1,B = 3. Thus, the

equation of our plane is —x + 3y + 2z — 2 = 0. We are interested in the

y-coordinate of the plane at the point (2, 3,0). Putting this coordinate

into the equation, we find that 3 = %, meaning UX = %, which implies
Ux 1

uv = %, or, in other words, XV - 3



14.

15.

16.

Notice that we require that not both a and b are zero; this would cause
a division by zero. If @ = 0 and b # 0, then we can’t have z = %’r,
where k is any integer, because these would make either the cosine or
the sine function evaluate to zero, again causing an undefined quotient.
For the other cases, cross multiply. We have

absin®z 4 b?sinx + a®sinx + ab = abcos®  + b% cosx + a® cosx + ab
ab(sin® x — cos? z) + (a® + b*)(sinx — cosx) =0

ab(sinz — cos x)(sinx + cos ) + (a® + b*)(sinx — cosz) = 0

(sinz — cosx)[ab(sin z + cos ) + (a® + b*)] =0

If either term is zero, then the product will be zero. The expression
in parentheses is equal to zero when the sine and cosine functions are
equal, this is the set of points 7 + k7, where k is an integer.

The bracketed term is harder to deal with. Rearranging the contents,

) a® + b* ) .
we get to sinxz + cosx = — o For this equation to hold, we
a
require that aQ(jbe be strictly less than 2, since a rough estimate of the

maximum of |sinz + cosz| is 1 + 1 = 2. (With calculus, we can show
that the maximum is actually v/2.)

a® ;l—) b? < 9

a4+ < 2ab
a>—2ab+ b < 0

(a—b)? < 0

Clearly, this is impossible. So, we can have no other solutions to the
given equation other than § + km, where k is an integer.

1 2
cos(2r) = 1 — 2sin®(z) = sin®(z) = 5~ cosé z)

the boundary sin?(z). Notice that the area caught by y = 0 and y =

cos(2z) “cancels” for 0 < x < 7 (see graph on next page). Thus, the

area is just the area between y = 0 and y = % from z = 0 to z = 7.
This is a rectangle; the area is % X5 =7

. So, we can replace

We will make frequent use of two trigonometric identities:

2 tan(h)

tan(20) = T tan’(d)
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Figure 5: y = cos(2x) and y = 1/2

tan(6) + tan(¢)
tan(f + ¢) = 1 — tan(6) tan(¢)

We can derive the first identity as follows:

tan(26) = sin(20)  2sinfcosf 2sin 6
 cos(20)  cos?f —sin?f  cosf — tanfsinf

B 2sin 8 _ 2tan 0
~ cosf(l —tan?0) 1 —tan?6
And the second one like this:

sin(f + ¢)  sinfcos¢ + sin¢cosf

tan(9 + ¢) = 008(9 + ¢) " cos b cos ¢ — sin sin ¢

sinfcos¢  sin ¢ cosf

cosfcos¢p cosgcosf)  tanf +tan¢
sin 6 sin ¢ 1 —tanftan¢
cos 6 cos ¢




(a) The situation is 7 = tan~*(%)+tan*(=). We can take the tangent

1,1
= _|._ =
of both sides, with the help of the second identity. Thus, 1 = 1m T

Simplifying, we find that mn—m—n =1, or (m—1)(n—1) = 2. Since
the only factors of 2 are 1 and 2, the only (m,n) pairs that satisfy our
equation are (2,3) and (3,2).

(b) We have T = 2tan~'(--) 4+ tan~!(+). Again, take the tangent
of both sides. Utilising the double-angle formula and the angle sum
formula for the tangent function, we arrive at

2m 1
1— m2—1 n
_1 2m 1
m2—1n

Grinding through some algebra leads to n = f(m) = o 1
m? —2m —
The question concerns us with m > 1. Let’s start listing the (m,n)

pairs starting with m = 1:

m| 1234|567
n 11-717 23 34 47 62

It seems that the only (m,n) pair that satisfies our equation in this case
is (3,7), because the function f(m) seems to be a decreasing function
of m, the limit as m goes to infinity of f(m) is 1, and at m = 7, the
value of f(m) is already below 2. These facts are readily verifiable with
the tools of calculus, but we are interested in finding a solution that
makes use of tools in the Grade 12 curriculum.

Notice that we can rewrite f(m):

m? +2m — 1 (m? —2m — 1) + (4m)
m2—2m — 1 m2—2m — 1
4m

S T
+m2—2m—1

4

- 14—
+m—2—%



For m > 1 (the case we are told to consider), the denominator of the

second term is an increasing function, so S is a decreasing
m — _—

function. So, once the denominator is greater than TZ, we are assured
that f(m) < 2 and no higher values of m will lead to integer values of
n. We want m — 2 — % > 4, which we can use the quadratic formula to
solve. The largest root turns out to be 3 + /10 ~ 6.16, so for m > 6,
we can conclude that larger values of m are inadmissible. Thus, the
only (m,n) pair that satisfies our equation under the given constraints
is (3,7).

(c) We have Z = tan~'(L) + tan~'(+). Take the tangent of both
sides. An exact value for tan g is not usually taught... We can find
it by recalling the double-angle formula for the tangent function. Let

— s
x-tanS.

tanf =tan(2 x ) =1 =2’ +2—1=0=20=-1+2

122

Since tan % is positive, we reject the negative root, and tan § = V2-1.

Thus, we have v2—1 = tan(tan~' L +tan~' 1). Going through algebra
similar to part (a), we arrive at

3=

1
\/5—1:17”+

3=

1
m

We have no (m,n) solutions in the positive integers, because the left
side is irrational, while the right side is rational. So, we come to the
conclusion that there are no integer pairs (m, n) such that our equation
is satisfied.



